23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Yeast Genetic Analysis Reveals the Involvement of Chromatin Reassembly Factors in Repressing HIV-1 Basal Transcription

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rebound of HIV viremia after interruption of anti-retroviral therapy is due to the small population of CD4+ T cells that remain latently infected. HIV-1 transcription is the main process controlling post-integration latency. Regulation of HIV-1 transcription takes place at both initiation and elongation levels. Pausing of RNA polymerase II at the 5′ end of HIV-1 transcribed region (5′HIV-TR), which is immediately downstream of the transcription start site, plays an important role in the regulation of viral expression. The activation of HIV-1 transcription correlates with the rearrangement of a positioned nucleosome located at this region. These two facts suggest that the 5′HIV-TR contributes to inhibit basal transcription of those HIV-1 proviruses that remain latently inactive. However, little is known about the cell elements mediating the repressive role of the 5′HIV-TR. We performed a genetic analysis of this phenomenon in Saccharomyces cerevisiae after reconstructing a minimal HIV-1 transcriptional system in this yeast. Unexpectedly, we found that the critical role played by the 5′HIV-TR in maintaining low levels of basal transcription in yeast is mediated by FACT, Spt6, and Chd1, proteins so far associated with chromatin assembly and disassembly during ongoing transcription. We confirmed that this group of factors plays a role in HIV-1 postintegration latency in human cells by depleting the corresponding human orthologs with shRNAs, both in HIV latently infected cell populations and in particular single-integration clones, including a latent clone with a provirus integrated in a highly transcribed gene. Our results indicate that chromatin reassembly factors participate in the establishment of the equilibrium between activation and repression of HIV-1 when it integrates into the human genome, and they open the possibility of considering these factors as therapeutic targets of HIV-1 latency.

          Author Summary

          Acquired immunodeficiency syndrome (AIDS) is caused by the human immunodeficiency virus (HIV). Drugs used for anti-viral therapy are very efficient in controlling the presence of viral particles in infected patients. However, if this therapy is interrupted, rebound of viremia occurs due to the small population of cells that remain latently infected. A specific region of the HIV genome (the beginning of the transcribed region) plays an important role in viral expression and may contribute to its silent state in latently infected cells. We reconstructed a minimal HIV system in yeast to perform a genetic analysis of the role played by that specific region of the viral genome. We found that the repressive role played by this region is mediated by a group of proteins (chromatin reassembly factors) so far associated with other functions during gene expression. We confirmed that this group of factors plays a role in controlling HIV-1 basal transcription in human cells.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          HIV reproducibly establishes a latent infection after acute infection of T cells in vitro.

          The presence of latent reservoirs has prevented the eradication of human immunodeficiency virus (HIV) from infected patients successfully treated with anti-retroviral therapy. The mechanism of postintegration latency is poorly understood, partly because of the lack of an in vitro model. We have used an HIV retroviral vector or a full-length HIV genome expressing green fluorescent protein to infect a T lymphocyte cell line in vitro and highly enrich for latently infected cells. HIV latency occurred reproducibly, albeit with low frequency, during an acute infection. Clonal cell lines derived from latent populations showed no detectable basal expression, but could be transcriptionally activated after treatment with phorbol esters or tumor necrosis factor alpha. Direct sequencing of integration sites demonstrated that latent clones frequently contain HIV integrated in or close to alphoid repeat elements in heterochromatin. This is in contrast to a productive infection where integration in or near heterochromatin is disfavored. These observations demonstrate that HIV can reproducibly establish a latent infection as a consequence of integration in or near heterochromatin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome.

            Most nucleosomes are well-organized at the 5' ends of S. cerevisiae genes where "-1" and "+1" nucleosomes bracket a nucleosome-free promoter region (NFR). How nucleosomal organization is specified by the genome is less clear. Here we establish and inter-relate rules governing genomic nucleosome organization by sequencing DNA from more than one million immunopurified S. cerevisiae nucleosomes (displayed at http://atlas.bx.psu.edu/). Evidence is presented that the organization of nucleosomes throughout genes is largely a consequence of statistical packing principles. The genomic sequence specifies the location of the -1 and +1 nucleosomes. The +1 nucleosome forms a barrier against which nucleosomes are packed, resulting in uniform positioning, which decays at farther distances from the barrier. We present evidence for a novel 3' NFR that is present at >95% of all genes. 3' NFRs may be important for transcription termination and anti-sense initiation. We present a high-resolution genome-wide map of TFIIB locations that implicates 3' NFRs in gene looping.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA.

              The HIV-1 Tat protein regulates transcription elongation through binding to the viral TAR RNA stem-loop structure. We have isolated a novel 87 kDa cyclin C-related protein (cyclin T) that interacts specifically with the transactivation domain of Tat. Cyclin T is a partner for CDK9, an RNAPII transcription elongation factor. Remarkably, the interaction of Tat with cyclin T strongly enhances the affinity and specificity of the Tat:TAR RNA interaction, and confers a requirement for sequences in the loop of TAR that are not recognized by Tat alone. Moreover, overexpression of human cyclin T rescues Tat activity in nonpermissive rodent cells. We propose that Tat directs cyclin T-CDK9 to RNAPII through cooperative binding to TAR RNA.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                January 2009
                January 2009
                16 January 2009
                : 5
                : 1
                : e1000339
                Affiliations
                [1 ]Departamento de Genética, Universidad de Sevilla, Seville, Spain
                [2 ]Centre de Regulació Genòmica, Universitat Pompeu Fabra, Barcelona, Spain
                Stanford University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: MV EG AJ SC. Performed the experiments: MV EG IR ARG FGH SJG. Analyzed the data: MV EG AJ SC. Wrote the paper: AJ SC.

                Article
                08-PLGE-RA-0102R3
                10.1371/journal.pgen.1000339
                2613532
                19148280
                3cb6ccba-4164-46ae-ab7d-cc2df2d6d996
                Vanti et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 January 2008
                : 12 December 2008
                Page count
                Pages: 12
                Categories
                Research Article
                Genetics and Genomics/Gene Expression
                Molecular Biology/Chromatin Structure
                Molecular Biology/Transcription Elongation
                Virology/Persistence and Latency

                Genetics
                Genetics

                Comments

                Comment on this article