8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      La excreción urinaria de creatinina en la reconstrucción de la composición corporal del ser humano Translated title: Urinary excretion of creatinine in the reconstruction of the body composition of the human being

      letter
      Journal of Negative and No Positive Results
      Research and Science S.L.

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr.

          We employed a whole body magnetic resonance imaging protocol to examine the influence of age, gender, body weight, and height on skeletal muscle (SM) mass and distribution in a large and heterogeneous sample of 468 men and women. Men had significantly (P < 0.001) more SM in comparison to women in both absolute terms (33.0 vs. 21.0 kg) and relative to body mass (38.4 vs. 30.6%). The gender differences were greater in the upper (40%) than lower (33%) body (P < 0.01). We observed a reduction in relative SM mass starting in the third decade; however, a noticeable decrease in absolute SM mass was not observed until the end of the fifth decade. This decrease was primarily attributed to a decrease in lower body SM. Weight and height explained approximately 50% of the variance in SM mass in men and women. Although a linear relationship existed between SM and height, the relationship between SM and body weight was curvilinear because the contribution of SM to weight gain decreased with increasing body weight. These findings indicate that men have more SM than women and that these gender differences are greater in the upper body. Independent of gender, aging is associated with a decrease in SM mass that is explained, in large measure, by a decrease in lower body SM occurring after the fifth decade.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estimation of skeletal muscle mass by bioelectrical impedance analysis.

            The purpose of this study was to develop and cross-validate predictive equations for estimating skeletal muscle (SM) mass using bioelectrical impedance analysis (BIA). Whole body SM mass, determined by magnetic resonance imaging, was compared with BIA measurements in a multiethnic sample of 388 men and women, aged 18-86 yr, at two different laboratories. Within each laboratory, equations for predicting SM mass from BIA measurements were derived using the data of the Caucasian subjects. These equations were then applied to the Caucasian subjects from the other laboratory to cross-validate the BIA method. Because the equations cross-validated (i.e., were not different), the data from both laboratories were pooled to generate the final regression equation SM mass (kg) = [(Ht 2 / R x 0.401) + (gender x 3.825) + (age x -0. 071)] + 5.102 where Ht is height in centimeters; R is BIA resistance in ohms; for gender, men = 1 and women = 0; and age is in years. The r(2) and SE of estimate of the regression equation were 0.86 and 2.7 kg (9%), respectively. The Caucasian-derived equation was applicable to Hispanics and African-Americans, but it underestimated SM mass in Asians. These results suggest that the BIA equation provides valid estimates of SM mass in healthy adults varying in age and adiposity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Skeletal muscle metabolism is a major determinant of resting energy expenditure.

              Energy expenditure varies among people, independent of body size and composition, and persons with a "low" metabolic rate seem to be at higher risk of gaining weight. To assess the importance of skeletal muscle metabolism as a determinant of metabolic rate, 24-h energy expenditure, basal metabolic rate (BMR), and sleeping metabolic rate (SMR) were measured by indirect calorimetry in 14 subjects (7 males, 7 females; 30 +/- 6 yr [mean +/- SD]; 79.1 +/- 17.3 kg; 22 +/- 7% body fat), and compared to forearm oxygen uptake. Values of energy expenditure were adjusted for individual differences in fat-free mass, fat mass, age, and sex. Adjusted BMR and SMR, expressed as deviations from predicted values, correlated with forearm resting oxygen uptake (ml O2/liter forearm) (r = 0.72, P less than 0.005 and r = 0.53, P = 0.05, respectively). These findings suggest that differences in resting muscle metabolism account for part of the variance in metabolic rate among individuals and may play a role in the pathogenesis of obesity.
                Bookmark

                Author and article information

                Journal
                jonnpr
                Journal of Negative and No Positive Results
                JONNPR
                Research and Science S.L. (Madrid, Madrid, Spain )
                2529-850X
                2021
                : 6
                : 5
                : 800-808
                Affiliations
                [1] La Habana orgnameHospital Pediátrico Docente “Juan Manuel Márquez” orgdiv1Laboratorio de Estudios de la Función Renal orgdiv2Servicio de Laboratorio Clínico Cuba
                Article
                S2529-850X2021000500800 S2529-850X(21)00600500800
                10.19230/jonnpr.4191
                3cd0b959-9afa-4583-afdd-39a8f5ca4f0b

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

                History
                : 15 January 2021
                : 08 January 2021
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 49, Pages: 9
                Product

                SciELO Spain

                Categories
                Carta al Director

                Comments

                Comment on this article