24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cryptococcus neoformans Capsular GXM Conformation and Epitope Presentation: A Molecular Modelling Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pathogenic encapsulated Cryptococcus neoformans fungus causes serious disease in immunosuppressed hosts. The capsule, a key virulence factor, consists primarily of the glucuronoxylomannan polysaccharide (GXM) that varies in composition according to serotype. While GXM is a potential vaccine target, vaccine development has been confounded by the existence of epitopes that elicit non-protective antibodies. Although there is evidence for protective antibodies binding conformational epitopes, the secondary structure of GXM remains an unsolved problem. Here an array of molecular dynamics simulations reveal that the GXM mannan backbone is consistently extended and relatively inflexible in both C. neoformans serotypes A and D. Backbone substitution does not alter the secondary structure, but rather adds structural motifs: β DGlcA and β DXyl side chains decorate the mannan backbone in two hydrophillic fringes, with mannose-6-O-acetylation forming a hydrophobic ridge between them. This work provides mechanistic rationales for clinical observations—the importance of O-acetylation for antibody binding; the lack of binding of protective antibodies to short GXM fragments; the existence of epitopes that elicit non-protective antibodies; and the self-aggregation of GXM chains—indicating that molecular modelling can play a role in the rational design of conjugate vaccines.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Accelerating molecular modeling applications with graphics processors.

          Molecular mechanics simulations offer a computational approach to study the behavior of biomolecules at atomic detail, but such simulations are limited in size and timescale by the available computing resources. State-of-the-art graphics processing units (GPUs) can perform over 500 billion arithmetic operations per second, a tremendous computational resource that can now be utilized for general purpose computing as a result of recent advances in GPU hardware and software architecture. In this article, an overview of recent advances in programmable GPUs is presented, with an emphasis on their application to molecular mechanics simulations and the programming techniques required to obtain optimal performance in these cases. We demonstrate the use of GPUs for the calculation of long-range electrostatics and nonbonded forces for molecular dynamics simulations, where GPU-based calculations are typically 10-100 times faster than heavily optimized CPU-based implementations. The application of GPU acceleration to biomolecular simulation is also demonstrated through the use of GPU-accelerated Coulomb-based ion placement and calculation of time-averaged potentials from molecular dynamics trajectories. A novel approximation to Coulomb potential calculation, the multilevel summation method, is introduced and compared with direct Coulomb summation. In light of the performance obtained for this set of calculations, future applications of graphics processors to molecular dynamics simulations are discussed. (c) 2007 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Case for Adopting the “Species Complex” Nomenclature for the Etiologic Agents of Cryptococcosis

            ABSTRACT Cryptococcosis is a potentially lethal disease of humans/animals caused by Cryptococcus neoformans and Cryptococcus gattii. Distinction between the two species is based on phenotypic and genotypic characteristics. Recently, it was proposed that C. neoformans be divided into two species and C. gattii into five species based on a phylogenetic analysis of 115 isolates. While this proposal adds to the knowledge about the genetic diversity and population structure of cryptococcosis agents, the published genotypes of 2,606 strains have already revealed more genetic diversity than is encompassed by seven species. Naming every clade as a separate species at this juncture will lead to continuing nomenclatural instability. In the absence of biological differences between clades and no consensus about how DNA sequence alone can delineate a species, we recommend using “Cryptococcus neoformans species complex” and “C. gattii species complex” as a practical intermediate step, rather than creating more species. This strategy recognizes genetic diversity without creating confusion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Additive empirical force field for hexopyranose monosaccharides.

              We present an all-atom additive empirical force field for the hexopyranose monosaccharide form of glucose and its diastereomers allose, altrose, galactose, gulose, idose, mannose, and talose. The model is developed to be consistent with the CHARMM all-atom biomolecular force fields, and the same parameters are used for all diastereomers, including both the alpha- and beta-anomers of each monosaccharide. The force field is developed in a hierarchical manner and reproduces the gas-phase and condensed-phase properties of small-molecule model compounds corresponding to fragments of pyranose monosaccharides. The resultant parameters are transferred to the full pyranose monosaccharides, and additional parameter development is done to achieve a complete hexopyranose monosaccharide force field. Parametrization target data include vibrational frequencies, crystal geometries, solute-water interaction energies, molecular volumes, heats of vaporization, and conformational energies, including those for over 1800 monosaccharide conformations at the MP2/cc-pVTZ//MP2/6-31G(d) level of theory. Although not targeted during parametrization, free energies of aqueous solvation for the model compounds compare favorably with experimental values. Also well-reproduced are monosaccharide crystal unit cell dimensions and ring pucker, densities of concentrated aqueous glucose systems, and the thermodynamic and dynamic properties of the exocyclic torsion in dilute aqueous systems. The new parameter set expands the CHARMM additive force field to allow for simulation of heterogeneous systems that include hexopyranose monosaccharides in addition to proteins, nucleic acids, and lipids. Copyright 2008 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                07 June 2020
                June 2020
                : 25
                : 11
                : 2651
                Affiliations
                [1 ]Department of Computer Science, University of Cape Town, Cape Town 7701, South Africa
                [2 ]Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA; acasade1@ 123456jhu.edu
                [3 ]Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland; stefan.oscarson@ 123456ucd.ie
                Author notes
                [* ]Correspondence: mkuttel@ 123456cs.uct.ac.za ; Tel.: +27-21-6505107
                Author information
                https://orcid.org/0000-0003-0554-4632
                https://orcid.org/0000-0002-9402-9167
                Article
                molecules-25-02651
                10.3390/molecules25112651
                7321252
                32517333
                3cd409ec-1996-4fcd-b9b3-639ce3bfa441
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 May 2020
                : 04 June 2020
                Categories
                Article

                cryptococcus neoformans,conjugate vaccines,gxm,conformation,capsular polysaccharide,epitope,carbohydrate antigen,molecular modelling

                Comments

                Comment on this article