40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Predicting consumer behavior with Web search.

      Proceedings of the National Academy of Sciences of the United States of America
      Behavior, physiology, Consumer Behavior, Forecasting, methods, Humans, Models, Theoretical, Search Engine, economics, statistics & numerical data

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent work has demonstrated that Web search volume can "predict the present," meaning that it can be used to accurately track outcomes such as unemployment levels, auto and home sales, and disease prevalence in near real time. Here we show that what consumers are searching for online can also predict their collective future behavior days or even weeks in advance. Specifically we use search query volume to forecast the opening weekend box-office revenue for feature films, first-month sales of video games, and the rank of songs on the Billboard Hot 100 chart, finding in all cases that search counts are highly predictive of future outcomes. We also find that search counts generally boost the performance of baseline models fit on other publicly available data, where the boost varies from modest to dramatic, depending on the application in question. Finally, we reexamine previous work on tracking flu trends and show that, perhaps surprisingly, the utility of search data relative to a simple autoregressive model is modest. We conclude that in the absence of other data sources, or where small improvements in predictive performance are material, search queries provide a useful guide to the near future.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Using internet searches for influenza surveillance.

          The Internet is an important source of health information. Thus, the frequency of Internet searches may provide information regarding infectious disease activity. As an example, we examined the relationship between searches for influenza and actual influenza occurrence. Using search queries from the Yahoo! search engine ( http://search.yahoo.com ) from March 2004 through May 2008, we counted daily unique queries originating in the United States that contained influenza-related search terms. Counts were divided by the total number of searches, and the resulting daily fraction of searches was averaged over the week. We estimated linear models, using searches with 1-10-week lead times as explanatory variables to predict the percentage of cultures positive for influenza and deaths attributable to pneumonia and influenza in the United States. With use of the frequency of searches, our models predicted an increase in cultures positive for influenza 1-3 weeks in advance of when they occurred (P < .001), and similar models predicted an increase in mortality attributable to pneumonia and influenza up to 5 weeks in advance (P < .001). Search-term surveillance may provide an additional tool for disease surveillance.
            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Predicting the Future with Social Media

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Prediction Markets

                Bookmark

                Author and article information

                Journal
                20876140
                2955127
                10.1073/pnas.1005962107

                Chemistry
                Behavior,physiology,Consumer Behavior,Forecasting,methods,Humans,Models, Theoretical,Search Engine,economics,statistics & numerical data

                Comments

                Comment on this article