10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Simulation Model for Hashimoto Autoimmune Thyroiditis Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hashimoto thyroiditis (HT) is a pathology that often causes a gradual thyroid insufficiency in affected patients due to the autoimmune destruction of this gland. The cellular immune response mediated by T helper lymphocytes TH1 and TH17 can induce the HT disease. In this pathologic condition, there is an imbalance between the TH17 and Treg lymphocytes as well as a gut microbiota dysfunction. The objective of this work was to describe the interactions of the cell subpopulations that participate in HT. To achieve this goal, we generated a mathematical model that allowed the simulation of different scenarios for the dynamic interaction between thyroid cells, the immune system, and the gut microbiota. We used a hypothetical-deductive design of mathematical modeling based on a system of ordinary differential equations, where the state variables are the TH1, TH17, and Treg lymphocytes, the thyrocytes, and the bacteria from gut microbiota. This work generated a compartmental model of the cellular immune response occurring in the thyroid gland. It was observed that TH1 and TH17 lymphocytes could increase the immune cells’ activity, as well as activate effector cells directly and trigger the apoptosis and inflammation processes of healthy thyrocytes indirectly. Likewise, the model showed that a reduction in Treg lymphocytes could increase the activity of TH17 lymphocytes when an imbalance of the gut microbiota composition occurred. The numerical results highlight the TH1, TH17, and bacterial balance of the gut microbiota activities as important factors for the development of HT disease.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Functional interactions between the gut microbiota and host metabolism.

          The link between the microbes in the human gut and the development of obesity, cardiovascular disease and metabolic syndromes, such as type 2 diabetes, is becoming clearer. However, because of the complexity of the microbial community, the functional connections are less well understood. Studies in both mice and humans are helping to show what effect the gut microbiota has on host metabolism by improving energy yield from food and modulating dietary or the host-derived compounds that alter host metabolic pathways. Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, we will be in a better position to develop treatments for metabolic disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides.

            Resistant starch (RS) is starch and products of its small intestinal digestion that enter the large bowel. It occurs for various reasons including chemical structure, cooking of food, chemical modification, and food mastication. Human colonic bacteria ferment RS and nonstarch polysaccharides (NSP; major components of dietary fiber) to short-chain fatty acids (SCFA), mainly acetate, propionate, and butyrate. SCFA stimulate colonic blood flow and fluid and electrolyte uptake. Butyrate is a preferred substrate for colonocytes and appears to promote a normal phenotype in these cells. Fermentation of some RS types favors butyrate production. Measurement of colonic fermentation in humans is difficult, and indirect measures (e.g., fecal samples) or animal models have been used. Of the latter, rodents appear to be of limited value, and pigs or dogs are preferable. RS is less effective than NSP in stool bulking, but epidemiological data suggest that it is more protective against colorectal cancer, possibly via butyrate. RS is a prebiotic, but knowledge of its other interactions with the microflora is limited. The contribution of RS to fermentation and colonic physiology seems to be greater than that of NSP. However, the lack of a generally accepted analytical procedure that accommodates the major influences on RS means this is yet to be established.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Generation of Pathogenic Th17 Cells in the Absence of TGF-β Signaling

              CD4+ T cells that selectively produce interleukin (IL)-17, are critical for host defense and autoimmunity 1–4 . Crucial for T helper17 (Th17) cells in vivo 5,6 , IL-23 has been thought to be incapable of driving initial differentiation. Rather, IL-6 and transforming growth factor (TGF)-β1 have been argued to be the factors responsible for initiating specification 7–10 . Herein, we show that Th17 differentiation can occur in the absence of TGF-β signaling. Neither IL-6 nor IL-23 alone efficiently generated Th17 cells; however, these cytokines in combination with IL-1β effectively induced IL-17 production in naïve precursors, independently of TGF-β. Epigenetic modification of the Il17a/Il17f and Rorc promoters proceeded without TGF-β1, allowing the generation of cells that co-expressed Rorγt and T-bet. T-bet+ Rorγt+ Th17 cells are generated in vivo during experimental allergic encephalomyelitis (EAE), and adoptively transferred Th17 cells generated with IL-23 without TGF-β1 were pathogenic in this disease model. These data suggest an alternative mode for Th17 differentiation. Consistent with genetic data linking IL23R with autoimmunity, our findings re-emphasize the importance of IL-23 and therefore have may have therapeutic implications.
                Bookmark

                Author and article information

                Journal
                Endocrinology
                Endocrinology
                endo
                Endocrinology
                Oxford University Press (US )
                0013-7227
                1945-7170
                December 2021
                08 September 2021
                08 September 2021
                : 162
                : 12
                : bqab190
                Affiliations
                [1 ]Laboratorio de Genética y Microevolución, Facultad de Ciencias Básicas, Universidad Católica del Maule , Talca 3466706, Chile
                [2 ]Doctorado en Modelamiento Matemático Aplicado, Facultad de Ciencias Básicas, Universidad Católica del Maule , Talca 3466706, Chile
                [3 ]Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule , Talca 3466706, Chile
                [4 ]Centro de Investigación y Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule , Talca 3466706, Chile
                Author notes
                Correspondence: Marcela Salazar, Laboratorio de Genética y Microevolución, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, 3466706 Chile. Email: marcelaloretosalazar@ 123456gmail.com
                Correspondence: Juan Gabriel Vergaño, Universidad Católica del Maule, Talca, 3466706 Chile. Email: jgvs190@ 123456gmail.com .
                Author information
                https://orcid.org/0000-0001-7065-8842
                https://orcid.org/0000-0003-2626-7558
                Article
                bqab190
                10.1210/endocr/bqab190
                8477452
                34496027
                3cd8bcba-a10c-45c9-881d-e69fa537ab88
                © The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence ( https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 13 April 2021
                : 01 September 2021
                : 28 September 2021
                Page count
                Pages: 11
                Categories
                Research Articles
                AcademicSubjects/MED00250

                Endocrinology & Diabetes
                autoimmune hypothyroidism,t helper cells,gut microbiota,thyrocytes,mathematical modeling,dynamic systems

                Comments

                Comment on this article