44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ER-associated degradation: Protein quality control and beyond

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Even with the assistance of many cellular factors, a significant fraction of newly synthesized proteins ends up misfolded. Cells evolved protein quality control systems to ensure that these potentially toxic species are detected and eliminated. The best characterized of these pathways, the ER-associated protein degradation (ERAD), monitors the folding of membrane and secretory proteins whose biogenesis takes place in the endoplasmic reticulum (ER). There is also increasing evidence that ERAD controls other ER-related functions through regulated degradation of certain folded ER proteins, further highlighting the role of ERAD in cellular homeostasis.

          Related collections

          Most cited references 87

          • Record: found
          • Abstract: found
          • Article: not found

          A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol.

          Elimination of misfolded proteins from the endoplasmic reticulum (ER) by retro-translocation is an important physiological adaptation to ER stress. This process requires recognition of a substrate in the ER lumen and its subsequent movement through the membrane by the cytosolic p97 ATPase. Here we identify a p97-interacting membrane protein complex in the mammalian ER that links these two events. The central component of the complex, Derlin-1, is a homologue of Der1, a yeast protein whose inactivation prevents the elimination of misfolded luminal ER proteins. Derlin-1 associates with different substrates as they move through the membrane, and inactivation of Derlin-1 in C. elegans causes ER stress. Derlin-1 interacts with US11, a virally encoded ER protein that specifically targets MHC class I heavy chains for export from the ER, as well as with VIMP, a novel membrane protein that recruits the p97 ATPase and its cofactor.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Defining human ERAD networks through an integrative mapping strategy

            SUMMARY Proteins that fail to correctly fold or assemble into oligomeric complexes in the endoplasmic reticulum (ER) are degraded by a ubiquitin and proteasome dependent process known as ER-associated degradation (ERAD). Although many individual components of the ERAD system have been identified, how these proteins are organised into a functional network that coordinates recognition, ubiquitination, and dislocation of substrates across the ER membrane is not well understood. We have investigated the functional organisation of the mammalian ERAD system using a systems-level strategy that integrates proteomics, functional genomics, and the transcriptional response to ER stress. This analysis supports an adaptive organisation for the mammalian ERAD machinery and reveals a number of metazoan-specific genes not previously linked to ERAD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A membrane protein required for dislocation of misfolded proteins from the ER.

              After insertion into the endoplasmic reticulum (ER), proteins that fail to fold there are destroyed. Through a process termed dislocation such misfolded proteins arrive in the cytosol, where ubiquitination, deglycosylation and finally proteasomal proteolysis dispense with the unwanted polypeptides. The machinery involved in the extraction of misfolded proteins from the ER is poorly defined. The human cytomegalovirus-encoded glycoproteins US2 and US11 catalyse the dislocation of class I major histocompatibility complex (MHC) products, resulting in their rapid degradation. Here we show that US11 uses its transmembrane domain to recruit class I MHC products to a human homologue of yeast Der1p, a protein essential for the degradation of a subset of misfolded ER proteins. We show that this protein, Derlin-1, is essential for the degradation of class I MHC molecules catalysed by US11, but not by US2. We conclude that Derlin-1 is an important factor for the extraction of certain aberrantly folded proteins from the mammalian ER.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                17 March 2014
                : 204
                : 6
                : 869-879
                Affiliations
                [1 ]Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), 88 08003 Barcelona, Spain
                [2 ]Universitat Pompeu Fabra (UPF), 88 08003 Barcelona, Spain
                Author notes
                Correspondence to Pedro Carvalho: pedro.carvalho@ 123456crg.eu

                A. Ruggiano and O. Foresti contributed equally to this paper.

                Article
                201312042
                10.1083/jcb.201312042
                3998802
                24637321
                © 2014 Ruggiano et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                Product
                Categories
                16
                Reviews
                Review
                Quality control

                Cell biology

                Comments

                Comment on this article