41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Model Predictive Control of Autonomous Mobility-on-Demand Systems

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper we present a model predictive control (MPC) approach to optimize vehicle scheduling and routing in an autonomous mobility-on-demand (AMoD) system. In AMoD systems, robotic, self-driving vehicles transport customers within an urban environment and are coordinated to optimize service throughout the entire network. Specifically, we first propose a novel discrete-time model of an AMoD system and we show that this formulation allows the easy integration of a number of real-world constraints, e.g., electric vehicle charging constraints. Second, leveraging our model, we design a model predictive control algorithm for the optimal coordination of an AMoD system and prove its stability in the sense of Lyapunov. At each optimization step, the vehicle scheduling and routing problem is solved as a mixed integer linear program (MILP) where the decision variables are binary variables representing whether a vehicle will 1) wait at a station, 2) service a customer, or 3) rebalance to another station. Finally, by using real-world data, we show that the MPC algorithm can be run in real-time for moderately-sized systems and outperforms previous control strategies for AMoD systems.

          Related collections

          Author and article information

          Journal
          2015-09-14
          2016-02-15
          Article
          1509.03985
          c72ec6bc-e444-422b-87e5-b58e43c877f4

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Extended version of ICRA16 paper, with full proofs of the theorems
          cs.SY

          Performance, Systems & Control
          Performance, Systems & Control

          Comments

          Comment on this article