45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toll‐Like Receptor‐2 Mediates Adaptive Cardiac Hypertrophy in Response to Pressure Overload Through Interleukin‐1β Upregulation via Nuclear Factor κB Activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Inflammation is induced in the heart during the development of cardiac hypertrophy. The initiating mechanisms and the role of inflammation in cardiac hypertrophy, however, remain unclear. Toll‐like receptor‐2 (TLR2) recognizes endogenous molecules that induce noninfectious inflammation. Here, we examined the role of TLR2‐mediated inflammation in cardiac hypertrophy.

          Methods and Results

          At 2 weeks after transverse aortic constriction, Tlr2 −/− mice showed reduced cardiac hypertrophy and fibrosis with greater left ventricular dilatation and impaired systolic function compared with wild‐type mice, which indicated impaired cardiac adaptation in Tlr2 −/− mice. Bone marrow transplantation experiment revealed that TLR2 expressed in the heart, but not in bone marrow–derived cells, is important for cardiac adaptive response to pressure overload. In vitro experiments demonstrated that TLR2 signaling can induce cardiomyocyte hypertrophy and fibroblast and vascular endothelial cell proliferation through nuclear factor–κB activation and interleukin‐1β upregulation. Systemic administration of a nuclear factor–κB inhibitor or anti–interleukin‐1β antibodies to wild‐type mice resulted in impaired adaptive cardiac hypertrophy after transverse aortic constriction. We also found that heat shock protein 70, which was increased in murine plasma after transverse aortic constriction, can activate TLR2 signaling in vitro and in vivo. Systemic administration of anti–heat shock protein 70 antibodies to wild‐type mice impaired adaptive cardiac hypertrophy after transverse aortic constriction.

          Conclusions

          Our results demonstrate that TLR2‐mediated inflammation induced by extracellularly released heat shock protein 70 is essential for adaptive cardiac hypertrophy in response to pressure overload. Thus, modulation of TLR2 signaling in the heart may provide a novel strategy for treating heart failure due to inadequate adaptation to hemodynamic stress.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production?

          The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is a multiprotein complex that activates caspase 1, leading to the processing and secretion of the pro-inflammatory cytokines interleukin-1beta (IL-1beta) and IL-18. The NLRP3 inflammasome is activated by a wide range of danger signals that derive not only from microorganisms but also from metabolic dysregulation. It is unclear how these highly varied stress signals can be detected by a single inflammasome. In this Opinion article, we review the different signalling pathways that have been proposed to engage the NLRP3 inflammasome and suggest a model in which one of the crucial elements for NLRP3 activation is the generation of reactive oxygen species (ROS).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial DNA That Escapes from Autophagy Causes Inflammation and Heart Failure

            Heart failure is a leading cause of morbidity and mortality in industrialized countries. Although infection with microorganisms is not involved in the development of heart failure in most cases, inflammation has been implicated in the pathogenesis of heart failure 1 . However, the mechanisms responsible for initiating and integrating inflammatory responses within the heart remain poorly defined. Mitochondria are evolutionary endosymbionts derived from bacteria and contain DNA similar to bacterial DNA 2,3,4 . Mitochondria damaged by external hemodynamic stress are degraded by the autophagy/lysosome system in cardiomyocytes 5 . Here, we show that mitochondrial DNA that escapes from autophagy cell-autonomously leads to Toll-like receptor (TLR) 9-mediated inflammatory responses in cardiomyocytes and is capable of inducing myocarditis, and dilated cardiomyopathy. Cardiac-specific deletion of lysosomal deoxyribonuclease (DNase) II showed no cardiac phenotypes under baseline conditions, but increased mortality and caused severe myocarditis and dilated cardiomyopathy 10 days after treatment with pressure overload. Early in the pathogenesis, DNase II-deficient hearts exhibited infiltration of inflammatory cells and increased mRNA expression of inflammatory cytokines, with accumulation of mitochondrial DNA deposits in autolysosomes in the myocardium. Administration of the inhibitory oligodeoxynucleotides against TLR9, which is known to be activated by bacterial DNA 6 , or ablation of Tlr9 attenuated the development of cardiomyopathy in DNase II-deficient mice. Furthermore, Tlr9-ablation improved pressure overload-induced cardiac dysfunction and inflammation even in mice with wild-type Dnase2a alleles. These data provide new perspectives on the mechanism of genesis of chronic inflammation in failing hearts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis.

              Metastatic progression depends on genetic alterations intrinsic to cancer cells as well as the inflammatory microenvironment of advanced tumours. To understand how cancer cells affect the inflammatory microenvironment, we conducted a biochemical screen for macrophage-activating factors secreted by metastatic carcinomas. Here we show that, among the cell lines screened, Lewis lung carcinoma (LLC) were the most potent macrophage activators leading to production of interleukin-6 (IL-6) and tumour-necrosis factor-alpha (TNF-alpha) through activation of the Toll-like receptor (TLR) family members TLR2 and TLR6. Both TNF-alpha and TLR2 were found to be required for LLC metastasis. Biochemical purification of LLC-conditioned medium (LCM) led to identification of the extracellular matrix proteoglycan versican, which is upregulated in many human tumours including lung cancer, as a macrophage activator that acts through TLR2 and its co-receptors TLR6 and CD14. By activating TLR2:TLR6 complexes and inducing TNF-alpha secretion by myeloid cells, versican strongly enhances LLC metastatic growth. These results explain how advanced cancer cells usurp components of the host innate immune system, including bone-marrow-derived myeloid progenitors, to generate an inflammatory microenvironment hospitable for metastatic growth.
                Bookmark

                Author and article information

                Journal
                J Am Heart Assoc
                J Am Heart Assoc
                ahaoa
                jah3
                Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
                Blackwell Publishing Ltd
                2047-9980
                December 2013
                19 December 2013
                : 2
                : 6
                : e000267
                Affiliations
                [1 ]Department of Cardiovascular Medicine, The University of Tokyo, 7‐3‐1 HongoBunkyo‐ku, Tokyo, 113‐8655, Japan (Y.H., K.T., Y.H., I.K.)
                [2 ]Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2‐11‐16 YayoiBunkyo‐ku, Tokyo, 113‐0032, Japan (M.K., O.N.)
                [3 ]Jichi Medical University, 3311‐1 YakushijiShimotsuke‐shi, Tochigi, 329‐0498, Japan (R.N.)
                [4 ]Department of Cardiovascular Medicine, The University of Tokushima, 3‐18‐15 Kuramoto‐choTokushima‐shi, Tokushima, 770‐8503, Japan (M.S.)
                Author notes
                Correspondence to: Masataka Sata, MD, PhD, Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, 3‐18‐15 Kuramoto‐cho, Tokushima 770‐8503, Japan. E‐mail: sata@ 123456clin.med.tokushima-u.ac.jp
                Article
                jah3362
                10.1161/JAHA.113.000267
                3886766
                24249711
                3cfa1092-7f4d-4b5a-aec6-06f23c53c79a
                © 2013 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

                This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 20 July 2013
                : 10 October 2013
                Categories
                Original Research
                Molecular Cardiology

                Cardiovascular Medicine
                heart failure,hypertrophy,inflammation,interleukins,signal transduction
                Cardiovascular Medicine
                heart failure, hypertrophy, inflammation, interleukins, signal transduction

                Comments

                Comment on this article