0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Transport of microtubules according to the number and spacing of kinesin motors on gold nano-pillars.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Motor proteins function in in vivo ensembles to achieve cargo transport, flagellum motion, and mitotic cell division. Although the cooperativity of multiple motors is indispensable for physiological function, reconstituting the arrangement of motors in vitro is challenging, so detailed analysis of the functions of motor ensembles has not yet been achieved. Here, we developed an assay platform to study the motility of microtubules driven by a defined number of kinesin motors spaced in a definite manner. Gold (Au) nano-pillar arrays were fabricated on a silicon/silicon dioxide (Si/SiO2) substrate with spacings of 100 nm to 500 nm. The thiol-polyethylene glycol (PEG)-biotin self-assembled monolayer (SAM) and silane-PEG-CH3 SAM were then selectively formed on the pillars and SiO2 surface, respectively. This allowed for both immobilization of kinesin molecules on Au nano-pillars in a precise manner and repulsion of kinesins from the SiO2 surface. Using arrayed kinesin motors, we report that motor number and spacing do not influence the motility of microtubules driven by kinesin-1 motors. This assay platform is applicable to all kinds of biotinylated motors, allows the study of the effects of motor number and spacing, and is expected to reveal novel behaviors of motor proteins.

          Related collections

          Author and article information

          Journal
          Nanoscale
          Nanoscale
          Royal Society of Chemistry (RSC)
          2040-3372
          2040-3364
          May 28 2019
          : 11
          : 20
          Affiliations
          [1 ] Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan. ryuji@me.kyoto-u.ac.jp.
          [2 ] Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2, Iwaoka, Nishi-ku, Kobe, Hyogo, 651-2492, Japan.
          Article
          10.1039/c9nr01324e
          30888373
          3cfe3f76-1880-44b0-b552-a77ed3f1b132
          History

          Comments

          Comment on this article