+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Secretome of Filarial Nematodes and Its Role in Host-Parasite Interactions and Pathogenicity in Onchocerciasis-Associated Epilepsy


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Filarial nematodes secrete bioactive molecules which are of interest as potential mediators for manipulating host biology, as they are readily available at the host-parasite interface. The adult parasites can survive for years in the mammalian host, due to their successful modulation of the host immune system and most of these immunomodulatory strategies are based on soluble mediators excreted by the parasite. The secretome of filarial nematodes is a key player in both infection and pathology, making them an interesting target for further investigation. This review summarises the current knowledge regarding the components of the excretory-secretory products (ESPs) of filarial parasites and their bioactive functions in the human host. In addition, the pathogenic potential of the identified components, which are mostly proteins, in the pathophysiology of onchocerciasis-associated epilepsy is discussed.

          Related collections

          Most cited references 80

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage migration inhibitory factor: a regulator of innate immunity

          Key Points Cytokines are essential effector molecules of innate immunity that initiate and coordinate the cellular and humoral responses aimed, for example, at the eradication of microbial pathogens. Discovered in the late 1960s as a product of activated T cells, the cytokine macrophage migration inhibitory factor (MIF) has been discovered recently to carry out important functions as a mediator of the innate immune system. Constitutively expressed by a broad spectrum of cells and tissues, including monocytes and macrophages, MIF is rapidly released after exposure to microbial products and pro-inflammatory mediators, and in response to stress. After it is released, MIF induces pro-inflammatory biological responses that act as a regulator of immune responses. MIF activates the extracellular signal-regulated kinase 1 (ERK1)/ERK2–mitogen-activated protein kinase pathway, inhibits the activity of JUN activation domain-binding protein 1 (JAB1) — a co-activator of the activator protein 1 (AP1) — upregulates the expression of Toll-like receptor 4 to promote the recognition of endotoxin-expressing bacterial pathogens, sustains pro-inflammatory function by inhibiting p53-dependent apoptosis of macrophages and counter-regulates the immunosuppressive effects of glucocorticoids on immune cells. As a pro-inflammatory mediator, MIF has been shown to be implicated in the pathogenesis of severe sepsis and septic shock, acute respiratory distress syndrome, and several other inflammatory and autoimmune diseases, including rheumatoid arthritis, glomerulonephritis and inflammatory bowel diseases. Given its crucial role as a regulator of innate and acquired immunity, pharmacological or immunological modulation of MIF activity might offer new treatment opportunities for the management of acute and chronic inflammatory diseases.
            • Record: found
            • Abstract: found
            • Article: not found

            Lymphatic filariasis and onchocerciasis.

            Lymphatic filariasis and onchocerciasis are parasitic helminth diseases that constitute a serious public health issue in tropical regions. The filarial nematodes that cause these diseases are transmitted by blood-feeding insects and produce chronic and long-term infection through suppression of host immunity. Disease pathogenesis is linked to host inflammation invoked by the death of the parasite, causing hydrocoele, lymphoedema, and elephantiasis in lymphatic filariasis, and skin disease and blindness in onchocerciasis. Most filarial species that infect people co-exist in mutualistic symbiosis with Wolbachia bacteria, which are essential for growth, development, and survival of their nematode hosts. These endosymbionts contribute to inflammatory disease pathogenesis and are a target for doxycycline therapy, which delivers macrofilaricidal activity, improves pathological outcomes, and is effective as monotherapy. Drugs to treat filariasis include diethylcarbamazine, ivermectin, and albendazole, which are used mostly in combination to reduce microfilariae in blood (lymphatic filariasis) and skin (onchocerciasis). Global programmes for control and elimination have been developed to provide sustained delivery of drugs to affected communities to interrupt transmission of disease and ultimately eliminate this burden on public health. Copyright © 2010 Elsevier Ltd. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Roles of galectins in infection.

               Gerardo Vasta (2009)
              Galectins, which were first characterized in the mid-1970s, were assigned a role in the recognition of endogenous ('self') carbohydrate ligands in embryogenesis, development and immune regulation. Recently, however, galectins have been shown to bind glycans on the surface of potentially pathogenic microorganisms, and function as recognition and effector factors in innate immunity. Some parasites subvert the recognition roles of the vector or host galectins to ensure successful attachment or invasion. This Review discusses the role of galectins in microbial infection, with particular emphasis on adaptations of pathogens to evasion or subversion of host galectin-mediated immune responses.

                Author and article information

                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                28 April 2021
                : 11
                1 Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp , Antwerp, Belgium
                2 Global Health Institute, University of Antwerp , Antwerp, Belgium
                Author notes

                Edited by: Martin Craig Taylor, University of London, United Kingdom

                Reviewed by: William Harnett, University of Strathclyde, United Kingdom; Lucienne Tritten, University of Zurich, Switzerland

                *Correspondence: An Hotterbeekx, an.hotterbeekx@ 123456uantwerpen.be

                †These authors have contributed equally to this work

                This article was submitted to Parasite and Host, a section of the journal Frontiers in Cellular and Infection Microbiology

                Copyright © 2021 Hotterbeekx, Perneel, Vieri, Colebunders and Kumar-Singh

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 80, Pages: 10, Words: 5698
                Funded by: European Research Council 10.13039/501100000781
                Funded by: Universiteit Antwerpen 10.13039/501100007660
                Cellular and Infection Microbiology


                Comment on this article