28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improving Diabetes Care for Young People With Type 1 Diabetes Through Visual Learning on Mobile Phones: Mixed-Methods Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Only 17% of Norwegian children and adolescents with diabetes achieve international treatment goals measured by glycated hemoglobin (HbA 1c). Classic patient–physician consultations seem to be poorly adapted to young children. New strategies that are better attuned to young people to improve support of adolescents’ self-management of diabetes need to be tested and evaluated.

          Objective

          (1) To explore how applications for mobile phones can be used in follow-up of adolescents with type 1 diabetes, and (2) to use the findings to guide further development of the applications and as a basis for future studies.

          Method

          We pilot tested two mobile phone applications: (1) an application that contained a picture-based diabetes diary to record physical activity and photos taken with the phone camera of food eaten, where the phone also communicated with the glucometer by Bluetooth technology to capture blood glucose values, and (2) a Web-based, password-secured and encrypted short message service (SMS), based on access using login passwords received via SMS to be used by participants to send messages to their providers when they faced obstacles in everyday life, and to send educational messages to the participants. At the end of the 3-month pilot study, 12 participants (7 girls and 5 boys ) aged 13–19 years completed semistructured interviews. The participants had a mean HbA 1c value of 8.3 (SD 0.3), mean age of 16.2 (SD 1.7) years, mean body mass index of 23.3 (SD 3.2) kg/m 2, and mean diabetes duration of 7.5 (SD 4.6) years. We applied three additional measurements: change in metabolic control as measured by HbA 1c, the System Usability Scale, and diabetes knowledge.

          Results

          From the interviews, three main categories emerged: visualization, access, and software changes. Participants appreciated the picture-based diary more than the SMS solution. Visualization of cornerstones in diabetes self-care (ie, diet, insulin dosage, physical activity, and pre- and postprandial glucose measurements all transformed into one picture) in the mobile diary was found to be an important educational tool through reflections in action. This led to a change in participants’ applied knowledge about the management of their disease. Additional measurements supplemented and supported the qualitative findings. However, changes in HbA 1c and participants’ theoretical knowledge as tested by a 27-item questionnaire, based on a national health informatics’ diabetes quiz, before and after the intervention were not statistically significant ( P = .38 and P = .82, respectively, paired-samples t test). Participants suggested additional functionality, and we will implement this in the design of the next software generation.

          Conclusion

          Participants reported an increased understanding of applied knowledge, which seem to positively affect diabetes self-care. Visual impressions seem well adapted to the maturation of the adolescent brain, facilitating the link between theoretical knowledge and executive functions. SMS gave the adolescents a feeling of increased access and security. Participants gave valuable input for further development of these applications.

          Related collections

          Most cited references 36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Features of Mobile Diabetes Applications: Review of the Literature and Analysis of Current Applications Compared Against Evidence-Based Guidelines

          Background Interest in mobile health (mHealth) applications for self-management of diabetes is growing. In July 2009, we found 60 diabetes applications on iTunes for iPhone; by February 2011 the number had increased by more than 400% to 260. Other mobile platforms reflect a similar trend. Despite the growth, research on both the design and the use of diabetes mHealth applications is scarce. Furthermore, the potential influence of social media on diabetes mHealth applications is largely unexplored. Objective Our objective was to study the salient features of mobile applications for diabetes care, in contrast to clinical guideline recommendations for diabetes self-management. These clinical guidelines are published by health authorities or associations such as the National Institute for Health and Clinical Excellence in the United Kingdom and the American Diabetes Association. Methods We searched online vendor markets (online stores for Apple iPhone, Google Android, BlackBerry, and Nokia Symbian), journal databases, and gray literature related to diabetes mobile applications. We included applications that featured a component for self-monitoring of blood glucose and excluded applications without English-language user interfaces, as well as those intended exclusively for health care professionals. We surveyed the following features: (1) self-monitoring: (1.1) blood glucose, (1.2) weight, (1.3) physical activity, (1.4) diet, (1.5) insulin and medication, and (1.6) blood pressure, (2) education, (3) disease-related alerts and reminders, (4) integration of social media functions, (5) disease-related data export and communication, and (6) synchronization with personal health record (PHR) systems or patient portals. We then contrasted the prevalence of these features with guideline recommendations. Results The search resulted in 973 matches, of which 137 met the selection criteria. The four most prevalent features of the applications available on the online markets (n = 101) were (1) insulin and medication recording, 63 (62%), (2) data export and communication, 61 (60%), (3) diet recording, 47 (47%), and (4) weight management, 43 (43%). From the literature search (n = 26), the most prevalent features were (1) PHR or Web server synchronization, 18 (69%), (2) insulin and medication recording, 17 (65%), (3) diet recording, 17 (65%), and (4) data export and communication, 16 (62%). Interestingly, although clinical guidelines widely refer to the importance of education, this is missing from the top functionalities in both cases. Conclusions While a wide selection of mobile applications seems to be available for people with diabetes, this study shows there are obvious gaps between the evidence-based recommendations and the functionality used in study interventions or found in online markets. Current results confirm personalized education as an underrepresented feature in diabetes mobile applications. We found no studies evaluating social media concepts in diabetes self-management on mobile devices, and its potential remains largely unexplored.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            National standards for diabetes self-management education.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Participatory Design: Issues and Concerns

                Bookmark

                Author and article information

                Contributors
                Journal
                J Med Internet Res
                J. Med. Internet Res
                JMIR
                Journal of Medical Internet Research
                Gunther Eysenbach (JMIR Publications Inc., Toronto, Canada )
                1439-4456
                1438-8871
                Jul-Aug 2012
                06 August 2012
                : 14
                : 4
                Affiliations
                [1] 1Research Centre for Child and Youth Competence Development Lillehammer University College LillehammerNorway
                [2] 2Faculty of Medicine University of Oslo OsloNorway
                [3] 3Norwegian Centre for Integrated Care and Telemedicine (NST) University Hospital of North Norway TromsøNorway
                [4] 4Department of Computer Science University of Tromsø TromsøNorway
                [5] 5Department of Special Needs Education University of Oslo OsloNorway
                Article
                v14i4e111
                10.2196/jmir.2155
                3803161
                22868871
                3d04cb9e-11e3-4ed9-9fd6-8a0589f54562
                ©Dag Helge Frøisland, Eirik Årsand, Finn Skårderud. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 06.08.2012.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.

                Categories
                Original Paper

                Comments

                Comment on this article