12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Transcriptional up-regulation of cell surface Na V 1.7 sodium channels by insulin-like growth factor-1 via inhibition of glycogen synthase kinase-3β in adrenal chromaffin cells: enhancement of 22Na+ influx, 45Ca2+ influx and catecholamine secretion.

      Neuropharmacology
      Adrenal Glands, cytology, Animals, Calcium, metabolism, Catecholamines, secretion, Cattle, Cells, Cultured, Chromaffin Cells, drug effects, Dose-Response Relationship, Drug, Enzyme Inhibitors, pharmacology, Glycogen Synthase Kinase 3, Immunoprecipitation, Insulin-Like Growth Factor I, Phosphorylation, Protein Binding, RNA, Messenger, Radioisotopes, pharmacokinetics, Receptor, IGF Type 1, Receptor, Insulin, Saxitoxin, Sodium, Sodium Channels, genetics, Time Factors, Up-Regulation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insulin-like growth factor-1 (IGF-1) plays important roles in the regulation of neuronal development. The electrical activity of Na(+) channels is crucial for the regulation of synaptic formation and maintenance/repair of neuronal circuits. Here, we examined the effects of chronic IGF-1 treatment on cell surface expression and function of Na(+) channels. In cultured bovine adrenal chromaffin cells expressing Na(V)1.7 isoform of voltage-dependent Na(+) channels, chronic IGF-1 treatment increased cell surface [(3)H]saxitoxin binding by 31%, without altering the Kd value. In cells treated with IGF-1, veratridine-induced (22)Na(+) influx, and subsequent (45)Ca(2+) influx and catecholamine secretion were augmented by 35%, 33%, 31%, respectively. Pharmacological properties of Na(+) channels characterized by neurotoxins were similar between nontreated and IGF-1-treated cells. IGF-1-induced up-regulation of [(3)H]saxitoxin binding was prevented by phosphatydil inositol-3 kinase inhibitors (LY204002 or wortmannin), or Akt inhibitor (Akt inhibitor IV). Glycogen synthase kinase-3 (GSK-3) inhibitors (LiCl, valproic acid, SB216763 or SB415286) also increased cell surface [(3)H]saxitoxin binding by ∼ 33%, whereas simultaneous treatment of IGF-1 with GSK-3 inhibitors did not produce additive increasing effect on [(3)H]saxitoxin binding. IGF-1 (100 nM) increased Ser(437)-phosphorylated Akt and Ser(9)-phosphorylated GSK-3β, and inhibited GSK-3β activity. Treatment with IGF-1, LiCl or SB216763 increased protein level of Na(+) channel α-subunit; it was prevented by cycloheximide. Either treatment increased α-subunit mRNA level by ∼ 48% and accelerated α-subunit gene transcription by ∼ 30% without altering α-subunit mRNA stability. Thus, inhibition of GSK-3β caused by IGF-1 up-regulates cell surface expression of functional Na(+) channels via acceleration of α-subunit gene transcription. Copyright © 2011 Elsevier Ltd. All rights reserved.

          Related collections

          Author and article information

          Comments

          Comment on this article