11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Adenosine A2A receptor stimulation increases angiogenesis by down-regulating production of the antiangiogenic matrix protein thrombospondin 1.

      Molecular pharmacology
      Adenosine, analogs & derivatives, pharmacology, Adenosine A2 Receptor Agonists, Adenosine A2 Receptor Antagonists, Dose-Response Relationship, Drug, Down-Regulation, drug effects, physiology, Endothelium, Vascular, cytology, metabolism, Humans, Neovascularization, Physiologic, Phenethylamines, Receptor, Adenosine A2A, biosynthesis, Thrombospondin 1, antagonists & inhibitors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Topical adenosine A2A receptor agonists promote wound healing by, among other effects, increasing microvessel formation. Results of representational display analysis of human umbilical vein endothelial cells suggested that A2A receptor occupancy modulates expression of the antiangiogenic matrix protein thrombospondin 1 (TSP1). We therefore determined whether A2A receptor occupation stimulates angiogenesis by modulating TSP1 secretion. Human microvascular endothelial cells (HMVEC) were treated with medium alone, 2-p-[2-carboxyethyl] phenethyl-amino-5'-N-ethylcarboxamido-adenosine (CGS-21680), or 2-[2-(4-chlorophenyl)ethoxy]adenosine (MRE0094), selective A2A receptor agonists. TSP1 protein secretion was down-regulated after treatment with the A2A agonists CGS-21680 or MRE0094 in a dose-dependent manner (EC50 = 6.65 nM and 0.23 microM respectively). The selective A2A receptor antagonist 4-[2-[7-amino-2-(2-furyl)[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl]phenol (ZM241385) but not the A1 and A2B receptor antagonists diphenylcyclopentylxanthine, enprofylline, and N-(4-acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]acetamide (MRS1706) completely abrogated the A2A receptor agonist-mediated effect on TSP1. Vascular tube formation by HMVEC was increased by adenosine A2A receptor agonists in a dose-dependent fashion (EC50 = 0.1 microM for both), and this effect was reversed by the A2A antagonist. Moreover, in the presence of antibodies to TSP1 and CD36, the receptor for TSP1, the adenosine A2A receptor agonists stimulated no increase in vascular tube formation. These results indicate that the angiogenic effects of adenosine A2A receptor activation are, at least in part, caused by the suppression of TSP1 secretion.

          Related collections

          Author and article information

          Comments

          Comment on this article