38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Minerals in plant food: effect of agricultural practices and role in human health. A review

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Soil fertility and biodiversity in organic farming.

          An understanding of agroecosystems is key to determining effective farming systems. Here we report results from a 21-year study of agronomic and ecological performance of biodynamic, bioorganic, and conventional farming systems in Central Europe. We found crop yields to be 20% lower in the organic systems, although input of fertilizer and energy was reduced by 34 to 53% and pesticide input by 97%. Enhanced soil fertility and higher biodiversity found in organic plots may render these systems less dependent on external inputs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The kidney, hypertension, and obesity.

            This paper provides a personal perspective of the role of abnormal renal-pressure natriuresis in the pathogenesis of hypertension. Direct support for a major role of renal-pressure natriuresis in long-term control of arterial pressure and sodium balance comes from studies demonstrating that (1) pressure natriuresis is impaired in all forms of chronic hypertension and (2) prevention of pressure natriuresis from operating, by servo-control of renal perfusion pressure, also prevents the maintenance of sodium balance hypertension. Although the precise mechanisms of impaired pressure natriuresis in essential hypertension have remained elusive, recent evidence suggests that obesity and overweight may play a major role. Obesity increases renal sodium reabsorption and impairs pressure natriuresis by activation of the renin-angiotensin and sympathetic nervous systems and by altered intrarenal physical forces. Chronic obesity also causes marked structural changes in the kidneys that eventually lead to a loss of nephron function, further increases in arterial pressure, and severe renal injury in some cases. Although there are many unanswered questions about the mechanisms of obesity hypertension and renal disease, this is one of the most promising areas for future research, especially in view of the growing, worldwide "epidemic" of obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity.

              It has been proposed that salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing abiotic stress tolerance in plants. The effect of varying salicylic acid (SA) supply (0, 0.1, 0.5 and 1.0mM) on growth, mineral uptake, membrane permeability, lipid peroxidation, H(2)O(2) concentration, UV-absorbing substances, chlorophyll and carotenoid concentrations of NaCl (40 mM) stressed maize (Zea mays L.) was investigated. Exogenously applied SA increased plant growth significantly both in saline and non-saline conditions. As a consequence of salinity stress, lipid peroxidation, measured in terms of malondialdehyde (MDA) content and membrane permeability was decreased by SA. UV-absorbing substances (UVAS) and H(2)O(2) concentration were increased by increasing levels of SA. SA also strongly inhibited Na(+) and Cl(-) accumulation, but stimulated N, Mg, Fe, Mn and Cu concentrations of salt stressed maize plants. These results suggest that SA could be used as a potential growth regulator to improve plant salinity stress resistance.
                Bookmark

                Author and article information

                Journal
                Agronomy for Sustainable Development
                Agron. Sustain. Dev.
                EDP Sciences
                1774-0746
                1773-0155
                April 2010
                April 16 2010
                April 2010
                : 30
                : 2
                : 295-309
                Article
                10.1051/agro/2009022
                3d1242ac-1f84-4790-a858-4b624ad95a23
                © 2010
                History

                Comments

                Comment on this article