6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-664 Targets Insulin Receptor Substrate 1 to Suppress Cell Proliferation and Invasion in Breast Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A large number of microRNAs (miRNAs) have been previously demonstrated to be dysregulated in breast cancer (BC), and alterations in miRNA expression may affect the initiation and progression of BC. This study showed that miR-664 expression was obviously reduced in BC tissues and cell lines. Resumption of the expression of miR-664 attenuated the proliferation and invasion of BC cells. The molecular mechanisms underlying the inhibitory effects of BC cell proliferation and invasion by miR-664 were also studied. Insulin receptor substrate 1 (IRS1) was identified as a novel and direct target of miR-664. In addition, siRNA-mediated silencing of IRS1 expression mimicked the suppressive effects of miR-664 overexpression in BC cells. Rescue experiments demonstrated that recovered IRS1 expression partially antagonized the inhibition of proliferation and invasion of BC cells caused by miR-664 overexpression. Thus, miR-664 may serve as a tumor suppressor in BC by directly targeting IRS1. Moreover, miR-664 downregulation in BC may contribute to the occurrence and development of BC, suggesting that miR-664 may be a novel therapeutic target for patients with BC.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNAs: genomics, biogenesis, mechanism, and function.

            MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNAs: target recognition and regulatory functions.

              MicroRNAs (miRNAs) are endogenous approximately 23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
                Bookmark

                Author and article information

                Journal
                Oncol Res
                Oncol Res
                OR
                Oncology Research
                Cognizant Communication Corporation (Elmsford, NY )
                0965-0407
                1555-3906
                2019
                29 March 2019
                : 27
                : 4
                : 459-467
                Affiliations
                [1] Department of Oncology, Linyi Central Hospital , Linyi, Shandong, P.R. China
                Author notes
                Address correspondence to Deliang Ma, Department of Oncology, Linyi Central Hospital, No. 17 Jiankang Road, Linyi, Shandong 276400, P.R. China. E-mail: ma_deliang@ 123456yeah.net
                Article
                OR1322
                10.3727/096504018X15193500663936
                7848467
                29495974
                3d130b39-eb75-423b-b3bb-6a450e16b1e8
                Copyright © 2019 Cognizant, LLC.

                This article is licensed under a Creative Commons Attribution-NonCommercial NoDerivatives 4.0 International License.

                History
                Page count
                Figures: 5, Tables: 0, References: 29, Pages: 9
                Categories
                Article

                mir-664,breast cancer (bc),insulin receptor substrate 1 (irs1),proliferation,invasion

                Comments

                Comment on this article