18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Landmarks in prostate cancer

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Mortality results from a randomized prostate-cancer screening trial.

          The effect of screening with prostate-specific-antigen (PSA) testing and digital rectal examination on the rate of death from prostate cancer is unknown. This is the first report from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial on prostate-cancer mortality. From 1993 through 2001, we randomly assigned 76,693 men at 10 U.S. study centers to receive either annual screening (38,343 subjects) or usual care as the control (38,350 subjects). Men in the screening group were offered annual PSA testing for 6 years and digital rectal examination for 4 years. The subjects and health care providers received the results and decided on the type of follow-up evaluation. Usual care sometimes included screening, as some organizations have recommended. The numbers of all cancers and deaths and causes of death were ascertained. In the screening group, rates of compliance were 85% for PSA testing and 86% for digital rectal examination. Rates of screening in the control group increased from 40% in the first year to 52% in the sixth year for PSA testing and ranged from 41 to 46% for digital rectal examination. After 7 years of follow-up, the incidence of prostate cancer per 10,000 person-years was 116 (2820 cancers) in the screening group and 95 (2322 cancers) in the control group (rate ratio, 1.22; 95% confidence interval [CI], 1.16 to 1.29). The incidence of death per 10,000 person-years was 2.0 (50 deaths) in the screening group and 1.7 (44 deaths) in the control group (rate ratio, 1.13; 95% CI, 0.75 to 1.70). The data at 10 years were 67% complete and consistent with these overall findings. After 7 to 10 years of follow-up, the rate of death from prostate cancer was very low and did not differ significantly between the two study groups. (ClinicalTrials.gov number, NCT00002540.) 2009 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial

            Summary Background Prostate cancer might have high radiation-fraction sensitivity that would give a therapeutic advantage to hypofractionated treatment. We present a pre-planned analysis of the efficacy and side-effects of a randomised trial comparing conventional and hypofractionated radiotherapy after 5 years follow-up. Methods CHHiP is a randomised, phase 3, non-inferiority trial that recruited men with localised prostate cancer (pT1b–T3aN0M0). Patients were randomly assigned (1:1:1) to conventional (74 Gy delivered in 37 fractions over 7·4 weeks) or one of two hypofractionated schedules (60 Gy in 20 fractions over 4 weeks or 57 Gy in 19 fractions over 3·8 weeks) all delivered with intensity-modulated techniques. Most patients were given radiotherapy with 3–6 months of neoadjuvant and concurrent androgen suppression. Randomisation was by computer-generated random permuted blocks, stratified by National Comprehensive Cancer Network (NCCN) risk group and radiotherapy treatment centre, and treatment allocation was not masked. The primary endpoint was time to biochemical or clinical failure; the critical hazard ratio (HR) for non-inferiority was 1·208. Analysis was by intention to treat. Long-term follow-up continues. The CHHiP trial is registered as an International Standard Randomised Controlled Trial, number ISRCTN97182923. Findings Between Oct 18, 2002, and June 17, 2011, 3216 men were enrolled from 71 centres and randomly assigned (74 Gy group, 1065 patients; 60 Gy group, 1074 patients; 57 Gy group, 1077 patients). Median follow-up was 62·4 months (IQR 53·9–77·0). The proportion of patients who were biochemical or clinical failure free at 5 years was 88·3% (95% CI 86·0–90·2) in the 74 Gy group, 90·6% (88·5–92·3) in the 60 Gy group, and 85·9% (83·4–88·0) in the 57 Gy group. 60 Gy was non-inferior to 74 Gy (HR 0·84 [90% CI 0·68–1·03], pNI=0·0018) but non-inferiority could not be claimed for 57 Gy compared with 74 Gy (HR 1·20 [0·99–1·46], pNI=0·48). Long-term side-effects were similar in the hypofractionated groups compared with the conventional group. There were no significant differences in either the proportion or cumulative incidence of side-effects 5 years after treatment using three clinician-reported as well as patient-reported outcome measures. The estimated cumulative 5 year incidence of Radiation Therapy Oncology Group (RTOG) grade 2 or worse bowel and bladder adverse events was 13·7% (111 events) and 9·1% (66 events) in the 74 Gy group, 11·9% (105 events) and 11·7% (88 events) in the 60 Gy group, 11·3% (95 events) and 6·6% (57 events) in the 57 Gy group, respectively. No treatment-related deaths were reported. Interpretation Hypofractionated radiotherapy using 60 Gy in 20 fractions is non-inferior to conventional fractionation using 74 Gy in 37 fractions and is recommended as a new standard of care for external-beam radiotherapy of localised prostate cancer. Funding Cancer Research UK, Department of Health, and the National Institute for Health Research Cancer Research Network.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter.

              The optimal upper limit of the normal range for prostate-specific antigen (PSA) is unknown. We investigated the prevalence of prostate cancer among men in the Prostate Cancer Prevention Trial who had a PSA level of 4.0 ng per milliliter or less. Of 18,882 men enrolled in the prevention trial, 9459 were randomly assigned to receive placebo and had an annual measurement of PSA and a digital rectal examination. Among these 9459 men, 2950 men never had a PSA level of more than 4.0 ng per milliliter or an abnormal digital rectal examination, had a final PSA determination, and underwent a prostate biopsy after being in the study for seven years. Among the 2950 men (age range, 62 to 91 years), prostate cancer was diagnosed in 449 (15.2 percent); 67 of these 449 cancers (14.9 percent) had a Gleason score of 7 or higher. The prevalence of prostate cancer was 6.6 percent among men with a PSA level of up to 0.5 ng per milliliter, 10.1 percent among those with values of 0.6 to 1.0 ng per milliliter, 17.0 percent among those with values of 1.1 to 2.0 ng per milliliter, 23.9 percent among those with values of 2.1 to 3.0 ng per milliliter, and 26.9 percent among those with values of 3.1 to 4.0 ng per milliliter. The prevalence of high-grade cancers increased from 12.5 percent of cancers associated with a PSA level of 0.5 ng per milliliter or less to 25.0 percent of cancers associated with a PSA level of 3.1 to 4.0 ng per milliliter. Biopsy-detected prostate cancer, including high-grade cancers, is not rare among men with PSA levels of 4.0 ng per milliliter or less--levels generally thought to be in the normal range. Copyright 2004 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                Nature Reviews Urology
                Nat Rev Urol
                Springer Nature America, Inc
                1759-4812
                1759-4820
                July 31 2018
                Article
                10.1038/s41585-018-0060-7
                30065357
                3d2411b6-ac35-45e4-8dd0-cc1124898dab
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article