12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: a quantitative study.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The corticospinal projection is considered to influence fine motor function through nearly exclusively contralateral projections from the cortex in primates. However, unilateral lesions to this system in various species are frequently followed by significant functional improvement, raising the possibility that bilateral projections of this pathway may exist or emerge after injury. To examine the detailed anatomy and projections of the corticospinal motor neurons in rhesus monkeys (n = 4), we injected the high-resolution anterograde tracer biotinylated dextran amine (BDA) into 126 sites centered about the right lower extremity (LE) primary motor cortex. Projection and termination patterns were quantified at lumbar levels L1, L4, and L7 and mapped by using serial-section reconstructions. Notably, a mean of 10.1 +/- 0.6% (+/- SEM) of corticospinal tract (CST) axons descended in the lateral CST ipsilateral to the cortical BDA injection, and 87.9 +/- 1.0% of total CST axons projected in the contralateral lateral CST. The ipsilateral ventral CST contained only 1.0 +/- 0% of all projecting CST axons, whereas the contralateral ventral CST contained 0.3 +/- 0.2% of all axons. In addition, a minor dorsal column CST projection was identified. Measurement of BDA-labeled terminals in the spinal cord gray matter revealed that 11.2 +/- 2.2% of CST axons terminated ipsilateral to the side of cortical injection, and the remainder terminated contralaterally. As previously reported, most CST axons terminated in spinal cord laminae V-VIII, as well as the laterodorsal motoneuronal group of lamina IX (which innervates distal extremity muscles). Notably, many CST axons crossed the spinal cord midline (mean 19.9 +/- 4.9 axons per 40-microm-thick section). Detailed single-axon reconstructions revealed that most ipsilaterally projecting lateral CST axons terminated in ipsilateral gray matter. Notably, we found that the bouton-like swellings of many ipsilateral CST axons descending in the dorsolateral tract were located within Rexed's lamina IX, in close proximity to motoneuronal somata. Thus, bilateral projections of corticospinal axons originating from a single motor cortex could contribute to bilateral control of spinal motor neurons and to the highly evolved degree of fine motor control in primates. Furthermore, bilateral CST projections from a single motor cortex could represent a potential source of plasticity after injury, as well as a target of therapeutic effort in neural regeneration strategies.

          Related collections

          Author and article information

          Journal
          J Comp Neurol
          The Journal of comparative neurology
          Wiley
          0021-9967
          0021-9967
          May 24 2004
          : 473
          : 2
          Affiliations
          [1 ] Department of Neurosciences, University of California-San Diego, La Jolla, California 92093, USA.
          Article
          10.1002/cne.20051
          15101086
          3d27c10f-7289-480e-b423-f488c9203d16
          Copyright 2004 Wiley-Liss, Inc.
          History

          Comments

          Comment on this article