21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An integrative evolution theory of histo-blood group ABO and related genes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ABO system is one of the most important blood group systems in transfusion/transplantation medicine. However, the evolutionary significance of the ABO gene and its polymorphism remained unknown. We took an integrative approach to gain insights into the significance of the evolutionary process of ABO genes, including those related not only phylogenetically but also functionally. We experimentally created a code table correlating amino acid sequence motifs of the ABO gene-encoded glycosyltransferases with GalNAc (A)/galactose (B) specificity, and assigned A/B specificity to individual ABO genes from various species thus going beyond the simple sequence comparison. Together with genome information and phylogenetic analyses, this assignment revealed early appearance of A and B gene sequences in evolution and potentially non-allelic presence of both gene sequences in some animal species. We argue: Evolution may have suppressed the establishment of two independent, functional A and B genes in most vertebrates and promoted A/B conversion through amino acid substitutions and/or recombination; A/B allelism should have existed in common ancestors of primates; and bacterial ABO genes evolved through horizontal and vertical gene transmission into 2 separate groups encoding glycosyltransferases with distinct sugar specificities.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Concerted and birth-and-death evolution of multigene families.

          Until around 1990, most multigene families were thought to be subject to concerted evolution, in which all member genes of a family evolve as a unit in concert. However, phylogenetic analysis of MHC and other immune system genes showed a quite different evolutionary pattern, and a new model called birth-and-death evolution was proposed. In this model, new genes are created by gene duplication and some duplicate genes stay in the genome for a long time, whereas others are inactivated or deleted from the genome. Later investigations have shown that most non-rRNA genes including highly conserved histone or ubiquitin genes are subject to this type of evolution. However, the controversy over the two models is still continuing because the distinction between the two models becomes difficult when sequence differences are small. Unlike concerted evolution, the model of birth-and-death evolution can give some insights into the origins of new genetic systems or new phenotypic characters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens.

            Helicobacter pylori is associated with development of gastritis, gastric ulcers, and adenocarcinomas in humans. The Lewis(b) (Le(b)) blood group antigen mediates H. pylori attachment to human gastric mucosa. Soluble glycoproteins presenting the Leb antigen or antibodies to the Leb antigen inhibited bacterial binding. Gastric tissue lacking Leb expression did not bind H. pylori. Bacteria did not bind to Leb antigen substituted with a terminal GalNAc alpha 1-3 residue (blood group A determinant), suggesting that the availability of H. pylori receptors might be reduced in individuals of blood group A and B phenotypes, as compared with blood group O individuals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular genetic basis of the histo-blood group ABO system.

              The histo-blood group ABO, the major human alloantigen system, involves three carbohydrate antigens (ABH). A, B and AB individuals express glycosyltransferase activities converting the H antigen into A or B antigens, whereas O(H) individuals lack such activity. Here we present a molecular basis for the ABO genotypes. The A and B genes differ in a few single-base substitutions, changing four amino-acid residues that may cause differences in A and B transferase specificity. A critical single-base deletion was found in the O gene, which results in an entirely different, inactive protein incapable of modifying the H antigen.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                13 October 2014
                2014
                : 4
                : 6601
                Affiliations
                [1 ]ABO Histo-blood Groups and Cancer Laboratory, Cancer Genetics and Epigenetics Program, Institut de Medicina Predictiva i Personalitzada del Càncer (IMPPC), Campus Can Ruti , Badalona, Catalonia, Spain
                [2 ]Division of Population Genetics, National Institute of Genetics , Mishima, Japan
                [3 ]IBE - Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra , Barcelona, Catalonia, Spain
                [4 ]Laboratoire d'Immunogénétique Moléculaire (LIMT, EA3034), Faculté de Médecine Purpan, Université Paul Sabatier, (Université de Toulouse III) , Toulouse, France
                Author notes
                Article
                srep06601
                10.1038/srep06601
                5377540
                25307962
                3d2ab333-1046-4f15-a4f8-dc2e38550651
                Copyright © 2014, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                History
                : 17 April 2014
                : 19 September 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article