Blog
About

7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Feasibility of Antimicrobial Stewardship (AMS) in Critical Care Settings: A Multidisciplinary Approach Strategy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antimicrobial resistance is escalating and triggers clinical decision-making challenges when treating infections in patients admitted to intensive care units (ICU). Antimicrobial stewardship (AMS) may help combat this problem, but it can be difficult to implement in critical care settings. The implementation of multidisciplinary AMS in ICUs could be more challenging than what is currently suggested in the literature. Our main goal was to analyze the reduction in duration of treatment (DOT) for the most commonly used antibacterial and antifungal agents during the first six months of 2014, and during the same period two years later (2016). A total of 426 and 424 patient encounters, respectively, were documented and collected from the intensive care unit’s electronic patient record system. Daily multidisciplinary ward rounds were conducted for approximately 30–40 min, with the goal of optimizing antimicrobial therapy in order to analyze the feasibility of implementing AMS. The only antimicrobial agent which showed a significant reduction in the number of prescriptions and in the duration of treatment during the second audit was vancomycin, while linezolid showed an increase in the number of prescriptions with no significant prolongation of the duration of treatment. A trend of reduction was also seen in the DOT for co-amoxiclavulanate and in the number of prescriptions of anidulafungin without any corresponding increases being observed for other broad-spectrum anti-infective agents ( p-values of 0.07 and 0.05, respectively).

          Related collections

          Most cited references 12

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients.

          Colonization and infection with vancomycin-resistant enterococci have been associated with exposure to antibiotics that are active against anaerobes. In mice that have intestinal colonization with vancomycin-resistant enterococci, these agents promote high-density colonization, whereas antibiotics with minimal antianaerobic activity do not. We conducted a seven-month prospective study of 51 patients who were colonized with vancomycin-resistant enterococci, as evidenced by the presence of the bacteria in stool. We examined the density of vancomycin-resistant enterococci in stool during and after therapy with antibiotic regimens and compared the effect on this density of antianaerobic agents and agents with minimal antianaerobic activity. In a subgroup of 10 patients, cultures of environmental specimens (e.g., from bedding and clothing) were obtained. During treatment with 40 of 42 antianaerobic-antibiotic regimens (95 percent), high-density colonization with vancomycin-resistant enterococci was maintained (mean [+/-SD] number of organisms, 7.8+/-1.5 log per gram of stool). The density of colonization decreased after these regimens were discontinued. Among patients who had not received antianaerobic antibiotics for at least one week, 10 of 13 patients who began such regimens had an increase in the number of organisms of more than 1.0 log per gram (mean increase, 2.2 log per gram), whereas among 10 patients who began regimens of antibiotics with minimal antianaerobic activity, there was a mean decrease in the number of enterococci of 0.6 log per gram (P=0.006 for the difference between groups). When the density of vancomycin-resistant enterococci in stool was at least 4 log per gram, 10 of 12 sets of cultures of environmental specimens had at least one positive sample, as compared with 1 of 9 sets from patients with a mean number of organisms in stool of less than 4 log per gram (P=0.002). For patients with vancomycin-resistant enterococci in stool, treatment with antianaerobic antibiotics promotes high-density colonization. Limiting the use of such agents in these patients may help decrease the spread of vancomycin-resistant enterococci.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Resistance patterns and outcomes in intensive care unit (ICU)-acquired pneumonia. Validation of European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC) classification of multidrug resistant organisms.

            Bacterial resistance has become a major public health problem.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Microbial Etiology of Pneumonia: Epidemiology, Diagnosis and Resistance Patterns

              Globally, pneumonia is a serious public health concern and a major cause of mortality and morbidity. Despite advances in antimicrobial therapies, microbiological diagnostic tests and prevention measures, pneumonia remains the main cause of death from infectious disease in the world. An important reason for the increased global mortality is the impact of pneumonia on chronic diseases, along with the increasing age of the population and the virulence factors of the causative microorganism. The increasing number of multidrug-resistant bacteria, difficult-to-treat microorganisms, and the emergence of new pathogens are a major problem for clinicians when deciding antimicrobial therapy. A key factor for managing and effectively guiding appropriate antimicrobial therapy is an understanding of the role of the different causative microorganisms in the etiology of pneumonia, since it has been shown that the adequacy of initial antimicrobial therapy is a key factor for prognosis in pneumonia. Furthermore, broad-spectrum antibiotic therapies are sometimes given until microbiological results are available and de-escalation cannot be performed quickly. This review provides an overview of microbial etiology, resistance patterns, epidemiology and microbial diagnosis of pneumonia.
                Bookmark

                Author and article information

                Journal
                Med Sci (Basel)
                Med Sci (Basel)
                medsci
                Medical Sciences
                MDPI
                2076-3271
                25 May 2018
                June 2018
                : 6
                : 2
                Affiliations
                [1 ]Department of Anaesthesia and Critical Care Medicine, St James’s Hospital, P.O. Box 580 Dublin 8, Ireland; tiszai_szucs@ 123456yahoo.com (T.T.-S.); macsweec@ 123456gmail.com (C.M.S.); jakeaveny@ 123456gmail.com (J.K.); ZOHagan@ 123456stjames.ie (Z.O.H.)
                [2 ]Fundacao Oswaldo Cruz, Rio de Janeiro, RJ 37903, Brazil; bozza.fernando@ 123456gmail.com
                [3 ]Multidisciplinary Intensive Care Research Organization (MICRO), St James’s Hospital, P.O. Box 580 Dublin 8, Ireland
                [4 ]Trinity Centre for Health Sciences, P.O. Box 580 Dublin 8, Ireland
                [5 ]CIBER enfermedades respiratorias, 28029 Madrid, Spain
                Author notes
                Article
                medsci-06-00040
                10.3390/medsci6020040
                6024547
                29799500
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Comments

                Comment on this article