5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Metal-Organic Framework Impregnated with a Binary Ionic Liquid for Safe Proton Conduction above 100 °C

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Ionic-liquid materials for the electrochemical challenges of the future.

          Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anhydrous proton conduction at 150 °C in a crystalline metal-organic framework.

            Metal organic frameworks (MOFs) are particularly exciting materials that couple porosity, diversity and crystallinity. But although they have been investigated for a wide range of applications, MOF chemistry focuses almost exclusively on properties intrinsic to the empty frameworks; the use of guest molecules to control functions has been essentially unexamined. Here we report Na(3)(2,4,6-trihydroxy-1,3,5-benzenetrisulfonate) (named β-PCMOF2), a MOF that conducts protons in regular one-dimensional pores lined with sulfonate groups. Proton conduction in β-PCMOF2 was modulated by the controlled loading of 1H-1,2,4-triazole (Tz) guests within the pores and reached 5 × 10(-4) S cm(-1) at 150 °C in anhydrous H(2), as confirmed by electrical measurements in H(2) and D(2), and by solid-state NMR spectroscopy. To confirm its potential as a gas separator membrane, the partially loaded MOF (β-PCMOF2(Tz)(0.45)) was also incorporated into a H(2)/air membrane electrode assembly. The resulting membrane proved to be gas tight, and gave an open circuit voltage of 1.18 V at 100 °C.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity.

              The development of anhydrous proton-conductive materials operating at temperatures above 80 degrees C is a challenge that needs to be met for practical applications. Herein, we propose the new idea of encapsulation of a proton-carrier molecule--imidazole in this work--in aluminium porous coordination polymers for the creation of a hybridized proton conductor under anhydrous conditions. Tuning of the host-guest interaction can generate a good proton-conducting path at temperatures above 100 degrees C. The dynamics of the adsorbed imidazole strongly affect the conductivity determined by (2)H solid-state NMR. Isotope measurements of conductivity using imidazole-d4 showed that the proton-hopping mechanism was dominant for the conducting path. This work suggests that the combination of guest molecules and a variety of microporous frameworks would afford highly mobile proton carriers in solids and gives an idea for designing a new type of proton conductor, particularly for high-temperature and anhydrous conditions.
                Bookmark

                Author and article information

                Journal
                Chemistry - A European Journal
                Chem. Eur. J.
                Wiley
                09476539
                January 26 2017
                January 26 2017
                December 27 2016
                : 23
                : 6
                : 1248-1252
                Affiliations
                [1 ]Department of Chemistry; Capital Normal University; Beijing 100048 P.R. China
                [2 ]State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences; Fuzhou Fujian 350002 P.R. China
                [3 ]Department of Chemistry; University of Calgary; Calgary Alberta T2N 1N4 Canada
                Article
                10.1002/chem.201605215
                3d496fb5-6b52-4279-8b58-fc1257cb3edb
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1

                http://onlinelibrary.wiley.com/termsAndConditions

                History

                Comments

                Comment on this article