+1 Recommend
1 collections
      • Record: found
      • Abstract: not found
      • Article: not found

      Gut Microbiome Associating with Carbon and Nitrogen Metabolism during Biodegradation of Polyethene in Tenebrio larvae with Crop Residues as Co-Diets

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Tenebrio molitor and Tenebrio obscurus (Coleoptera: Tenebrionidae) larvae are two commercial insects that eat plant and crop residues as diets and also biodegrade synthetic plastics polyethylene (PE). We examined biodegradation of low-density PE (LDPE) foam (Mn = 28.9 kDa and Mw = 342.0 kDa) with and without respective co-diets, i.e., wheat brain (WB) or corn flour (CF), corn straw (CS), and rice straw (RS) at 4:1 (w/w), and their gut microbiome and genetic metabolic functional groups at 27.0 ± 0.5 °C after 28 days of incubation. The presence of co-diets enhanced LDPE consumption in both larvae and broad-depolymerized the ingested LDPE. The diet type shaped gut microbial diversity, potential pathways, and metabolic functions. The sequence of effectiveness of co-diets was WB or CF > CS > RS for larval development and LDPE degradation. Co-occurrence networks indicated that the larvae co-fed with LDPE displayed more complex correlations of gut microbiome than the larvae fed with single diets. The primary diet of WB or CF and crop residues CS and RS provided energy and nitrogen source to significantly enhance LDPE biodegradation with synergistic activities of the gut microbiota. For the larvae fed LDPE and LDPE plus co-diets, nitrogen fixation function was stimulated compared to normal diets and associated with LDPE biodegradation.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Production, use, and fate of all plastics ever made

          We present the first ever global account of the production, use, and end-of-life fate of all plastics ever made by humankind.
            • Record: found
            • Abstract: found
            • Article: not found

            The ecology of the microbiome: Networks, competition, and stability.

            The human gut harbors a large and complex community of beneficial microbes that remain stable over long periods. This stability is considered critical for good health but is poorly understood. Here we develop a body of ecological theory to help us understand microbiome stability. Although cooperating networks of microbes can be efficient, we find that they are often unstable. Counterintuitively, this finding indicates that hosts can benefit from microbial competition when this competition dampens cooperative networks and increases stability. More generally, stability is promoted by limiting positive feedbacks and weakening ecological interactions. We have analyzed host mechanisms for maintaining stability-including immune suppression, spatial structuring, and feeding of community members-and support our key predictions with recent data.
              • Record: found
              • Abstract: found
              • Article: not found

              Multiorganismal insects: diversity and function of resident microorganisms.

              All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

                Author and article information

                Environmental Science & Technology
                Environ. Sci. Technol.
                American Chemical Society (ACS)
                February 28 2023
                February 15 2023
                February 28 2023
                : 57
                : 8
                : 3031-3041
                [1 ]State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
                [2 ]College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
                [3 ]Department of Civil and Environmental Engineering, Department of Chemistry, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, California 94305, United States
                © 2023






                Comment on this article