13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evolution of multiple families of non-LTR retrotransposons in phlebotomine sandflies.

      Brain research. Brain research reviews
      Amino Acid Sequence, Animals, Base Sequence, Evolution, Molecular, Female, Genetic Variation, Molecular Sequence Data, Phlebotomus, enzymology, genetics, Phylogeny, Polymerase Chain Reaction, Psychodidae, RNA-Directed DNA Polymerase, Retroelements, Sequence Alignment, Sequence Homology

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper we report on the diversity and distribution of a set of non-LTR retrotransposon (RTP) reverse transcriptase (RT) sequences isolated from phlebotomine sandflies, and their potential for investigating the evolutionary histories of members of this subfamily of flies (Diptera:Psychodidae, Phlebotominae). The phlebotomine RT sequence families derived from one species were as different from each other as they were from RT sequences derived from other species. When each was used to probe Southern blots of sandfly genomic DNA they hybridized only to the species of source and, usually, to others of the same subgenus, but not to DNA from other subgenera-a hybridization pattern consistent with vertical evolution. There was considerable intraspecific variation in hybridization pattern, suggesting the RTs were part of non-LTR RTPs that are (or were recently) subject to flux in genomic position and copy number. Most of the RT families detected in phlebotomines are monophyletic with respect to previously described RTs, and all are monophyletic with RTs of the F/Jockey (Drosophila melanogaster) type of RTP. Orthologous sequences were isolated from the closely related species Phlebotomus perniciosus and P. tobbi (subgenus Larroussius), and different populations of P. perniciosus. The level of sequence divergence among these orthologous RTs, the subgeneric distribution of each RT family, and the intraspecific variation in hybridization pattern of many of them, indicate this class of sequence will provide genetic markers at the sub-generic level.

          Related collections

          Author and article information

          Comments

          Comment on this article