170
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or 'ontologies'. Unfortunately, the very success of this approach has led to a proliferation of ontologies, which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium is pursuing a strategy to overcome this problem. Existing OBO ontologies, including the Gene Ontology, are undergoing coordinated reform, and new ontologies are being created on the basis of an evolving set of shared principles governing ontology development. The result is an expanding family of ontologies designed to be interoperable and logically well formed and to incorporate accurate representations of biological reality. We describe this OBO Foundry initiative and provide guidelines for those who might wish to become involved.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          The Gene Ontology (GO) project in 2006

          (2005)
          The Gene Ontology (GO) project () develops and uses a set of structured, controlled vocabularies for community use in annotating genes, gene products and sequences (also see ). The GO Consortium continues to improve to the vocabulary content, reflecting the impact of several novel mechanisms of incorporating community input. A growing number of model organism databases and genome annotation groups contribute annotation sets using GO terms to GO's public repository. Updates to the AmiGO browser have improved access to contributed genome annotations. As the GO project continues to grow, the use of the GO vocabularies is becoming more varied as well as more widespread. The GO project provides an ontological annotation system that enables biologists to infer knowledge from large amounts of data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Unified Medical Language System (UMLS): integrating biomedical terminology.

            The Unified Medical Language System (http://umlsks.nlm.nih.gov) is a repository of biomedical vocabularies developed by the US National Library of Medicine. The UMLS integrates over 2 million names for some 900,000 concepts from more than 60 families of biomedical vocabularies, as well as 12 million relations among these concepts. Vocabularies integrated in the UMLS Metathesaurus include the NCBI taxonomy, Gene Ontology, the Medical Subject Headings (MeSH), OMIM and the Digital Anatomist Symbolic Knowledge Base. UMLS concepts are not only inter-related, but may also be linked to external resources such as GenBank. In addition to data, the UMLS includes tools for customizing the Metathesaurus (MetamorphoSys), for generating lexical variants of concept names (lvg) and for extracting UMLS concepts from text (MetaMap). The UMLS knowledge sources are updated quarterly. All vocabularies are available at no fee for research purposes within an institution, but UMLS users are required to sign a license agreement. The UMLS knowledge sources are distributed on CD-ROM and by FTP.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology.

              The Gene Ontology Annotation (GOA) database (http://www.ebi.ac.uk/GOA) aims to provide high-quality electronic and manual annotations to the UniProt Knowledgebase (Swiss-Prot, TrEMBL and PIR-PSD) using the standardized vocabulary of the Gene Ontology (GO). As a supplementary archive of GO annotation, GOA promotes a high level of integration of the knowledge represented in UniProt with other databases. This is achieved by converting UniProt annotation into a recognized computational format. GOA provides annotated entries for nearly 60,000 species (GOA-SPTr) and is the largest and most comprehensive open-source contributor of annotations to the GO Consortium annotation effort. By integrating GO annotations from other model organism groups, GOA consolidates specialized knowledge and expertise to ensure the data remain a key reference for up-to-date biological information. Furthermore, the GOA database fully endorses the Human Proteomics Initiative by prioritizing the annotation of proteins likely to benefit human health and disease. In addition to a non-redundant set of annotations to the human proteome (GOA-Human) and monthly releases of its GO annotation for all species (GOA-SPTr), a series of GO mapping files and specific cross-references in other databases are also regularly distributed. GOA can be queried through a simple user-friendly web interface or downloaded in a parsable format via the EBI and GO FTP websites. The GOA data set can be used to enhance the annotation of particular model organism or gene expression data sets, although increasingly it has been used to evaluate GO predictions generated from text mining or protein interaction experiments. In 2004, the GOA team will build on its success and will continue to supplement the functional annotation of UniProt and work towards enhancing the ability of scientists to access all available biological information. Researchers wishing to query or contribute to the GOA project are encouraged to email: goa@ebi.ac.uk.
                Bookmark

                Author and article information

                Journal
                Nature Biotechnology
                Nat Biotechnol
                Springer Science and Business Media LLC
                1087-0156
                1546-1696
                November 2007
                November 7 2007
                November 2007
                : 25
                : 11
                : 1251-1255
                Article
                10.1038/nbt1346
                2814061
                17989687
                3d5ed893-61d6-41e0-aacc-74fbcb99e007
                © 2007

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article