3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Deconstructing Immune Microenvironments of Lymphoid Tissues for Reverse Engineering

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references182

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage plasticity, polarization, and function in health and disease.

          Macrophages are heterogeneous and their phenotype and functions are regulated by the surrounding micro-environment. Macrophages commonly exist in two distinct subsets: 1) Classically activated or M1 macrophages, which are pro-inflammatory and polarized by lipopolysaccharide (LPS) either alone or in association with Th1 cytokines such as IFN-γ, GM-CSF, and produce pro-inflammatory cytokines such as interleukin-1β (IL-1β), IL-6, IL-12, IL-23, and TNF-α; and 2) Alternatively activated or M2 macrophages, which are anti-inflammatory and immunoregulatory and polarized by Th2 cytokines such as IL-4 and IL-13 and produce anti-inflammatory cytokines such as IL-10 and TGF-β. M1 and M2 macrophages have different functions and transcriptional profiles. They have unique abilities by destroying pathogens or repair the inflammation-associated injury. It is known that M1/M2 macrophage balance polarization governs the fate of an organ in inflammation or injury. When the infection or inflammation is severe enough to affect an organ, macrophages first exhibit the M1 phenotype to release TNF-α, IL-1β, IL-12, and IL-23 against the stimulus. But, if M1 phase continues, it can cause tissue damage. Therefore, M2 macrophages secrete high amounts of IL-10 and TGF-β to suppress the inflammation, contribute to tissue repair, remodeling, vasculogenesis, and retain homeostasis. In this review, we first discuss the basic biology of macrophages including origin, differentiation and activation, tissue distribution, plasticity and polarization, migration, antigen presentation capacity, cytokine and chemokine production, metabolism, and involvement of microRNAs in macrophage polarization and function. Secondly, we discuss the protective and pathogenic role of the macrophage subsets in normal and pathological pregnancy, anti-microbial defense, anti-tumor immunity, metabolic disease and obesity, asthma and allergy, atherosclerosis, fibrosis, wound healing, and autoimmunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Decisions about dendritic cells: past, present, and future.

            A properly functioning adaptive immune system signifies the best features of life. It is diverse beyond compare, tolerant without fail, and capable of behaving appropriately with a myriad of infections and other challenges. Dendritic cells are required to explain how this remarkable system is energized and directed. I frame this article in terms of the major decisions that my colleagues and I have made in dendritic cell science and some of the guiding themes at the time the decisions were made. As a result of progress worldwide, there is now evidence of a central role for dendritic cells in initiating antigen-specific immunity and tolerance. The in vivo distribution and development of a previously unrecognized white cell lineage is better understood, as is the importance of dendritic cell maturation to link innate and adaptive immunity in response to many stimuli. Our current focus is on antigen uptake receptors on dendritic cells. These receptors enable experiments involving selective targeting of antigens in situ and new approaches to vaccine design in preclinical and clinical systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Present Yourself! By MHC Class I and MHC Class II Molecules.

              Since the discovery of MHC molecules, it has taken 40 years to arrive at a coherent picture of how MHC class I and MHC class II molecules really work. This is a story of the proteases and MHC-like chaperones that support the MHC class I and II molecules in presenting peptides to the immune system. We now understand that the MHC system shapes both the repertoire of presented peptides and the subsequent T cell response, with important implications ranging from transplant rejection to tumor immunotherapies. Here we present an illustrated review of the ins and outs of MHC class I and MHC class II antigen presentation.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Advanced Healthcare Materials
                Adv. Healthcare Mater.
                Wiley
                21922640
                December 05 2018
                : 1801126
                Affiliations
                [1 ]Core Technology Platforms; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
                [2 ]Laboratory for Immuno Bioengineering Research and Applications (LIBRA); Division of Engineering; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
                [3 ]Department of Mechanical and Aerospace Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
                [4 ]Department of Biomedical Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
                Article
                10.1002/adhm.201801126
                3d6f597e-6165-4c7a-93e1-c71a6c46fcf9
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article