1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Measuring Efficiency of Semi-automated Brain Tumor Segmentation by Simulating User Interaction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Traditionally, radiologists have crudely quantified tumor extent by measuring the longest and shortest dimension by dragging a cursor between opposite boundary points across a single image rather than full segmentation of the volumetric extent. For algorithmic-based volumetric segmentation, the degree of radiologist experiential involvement varies from confirming a fully automated segmentation, to making a single drag on an image to initiate semi-automated segmentation, to making multiple drags and clicks on multiple images during interactive segmentation. An experiment was designed to test an algorithm that allows various levels of interaction. Given the ground-truth of the BraTS training data, which delimits the brain tumors of 285 patients on multi-spectral MR, a computer simulation mimicked the process that a radiologist would follow to perform segmentation with real-time interaction. Clicks and drags were placed only where needed in response to the deviation between real-time segmentation results and assumed radiologist's goal, as provided by the ground-truth. Results of accuracy for various levels of interaction are presented along with estimated elapsed time, in order to measure efficiency. Average total elapsed time, including loading the study through confirming 3D contours, was 46 s.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).

          In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features

            Gliomas belong to a group of central nervous system tumors, and consist of various sub-regions. Gold standard labeling of these sub-regions in radiographic imaging is essential for both clinical and computational studies, including radiomic and radiogenomic analyses. Towards this end, we release segmentation labels and radiomic features for all pre-operative multimodal magnetic resonance imaging (MRI) (n=243) of the multi-institutional glioma collections of The Cancer Genome Atlas (TCGA), publicly available in The Cancer Imaging Archive (TCIA). Pre-operative scans were identified in both glioblastoma (TCGA-GBM, n=135) and low-grade-glioma (TCGA-LGG, n=108) collections via radiological assessment. The glioma sub-region labels were produced by an automated state-of-the-art method and manually revised by an expert board-certified neuroradiologist. An extensive panel of radiomic features was extracted based on the manually-revised labels. This set of labels and features should enable i) direct utilization of the TCGA/TCIA glioma collections towards repeatable, reproducible and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments, as well as ii) performance evaluation of computer-aided segmentation methods, and comparison to our state-of-the-art method.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop

              Imaging research laboratories are rapidly creating machine learning systems that achieve expert human performance using open-source methods and tools. These artificial intelligence systems are being developed to improve medical image reconstruction, noise reduction, quality assurance, triage, segmentation, computer-aided detection, computer-aided classification, and radiogenomics. In August 2018, a meeting was held in Bethesda, Maryland, at the National Institutes of Health to discuss the current state of the art and knowledge gaps and to develop a roadmap for future research initiatives. Key research priorities include: 1, new image reconstruction methods that efficiently produce images suitable for human interpretation from source data; 2, automated image labeling and annotation methods, including information extraction from the imaging report, electronic phenotyping, and prospective structured image reporting; 3, new machine learning methods for clinical imaging data, such as tailored, pretrained model architectures, and federated machine learning methods; 4, machine learning methods that can explain the advice they provide to human users (so-called explainable artificial intelligence); and 5, validated methods for image de-identification and data sharing to facilitate wide availability of clinical imaging data sets. This research roadmap is intended to identify and prioritize these needs for academic research laboratories, funding agencies, professional societies, and industry.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Comput Neurosci
                Front Comput Neurosci
                Front. Comput. Neurosci.
                Frontiers in Computational Neuroscience
                Frontiers Media S.A.
                1662-5188
                16 April 2020
                2020
                : 14
                : 32
                Affiliations
                HealthMyne Inc. , Madison, WI, United States
                Author notes

                Edited by: Spyridon Bakas, University of Pennsylvania, United States

                Reviewed by: Guotai Wang, University of Electronic Science and Technology of China, China; Tuo Zhang, Northwestern Polytechnical University, China

                *Correspondence: David Gering david.gering@ 123456healthmyne.com
                Article
                10.3389/fncom.2020.00032
                7177174
                32372938
                3d711706-d1f1-4d18-91f3-24de0877d59f
                Copyright © 2020 Gering, Kotrotsou, Young-Moxon, Miller, Avery, Kohli, Knapp, Hoffman, Chylla, Peitzman and Mackie.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 November 2019
                : 24 March 2020
                Page count
                Figures: 8, Tables: 5, Equations: 6, References: 20, Pages: 10, Words: 6169
                Categories
                Neuroscience
                Original Research

                Neurosciences
                brain mri,tumor,segmentation,glioma,deep learning,efficiency
                Neurosciences
                brain mri, tumor, segmentation, glioma, deep learning, efficiency

                Comments

                Comment on this article