50
views
0
recommends
+1 Recommend
1 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Copy number variation is associated with gene expression change in archaea

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genomic instability, although frequently deleterious, is also an important mechanism for microbial adaptation to environmental change. Although widely studied in bacteria, in archaea the effect of genomic instability on organism phenotypes and fitness remains unclear. Here we use DNA segmentation methods to detect and quantify genome-wide copy number variation (CNV) in large compendia of high-throughput datasets in a model archaeal species, Halobacterium salinarum. CNV hotspots were identified throughout the genome. Some hotspots were strongly associated with changes in gene expression, suggesting a mechanism for phenotypic innovation. In contrast, CNV hotspots in other genomic loci left expression unchanged, suggesting buffering of certain phenotypes. The correspondence of CNVs with gene expression was validated with strain- and condition-matched transcriptomics and DNA quantification experiments at specific loci. Significant correlation of CNV hotspot locations with the positions of known insertion sequence (IS) elements suggested a mechanism for generating genomic instability. Given the efficient recombination capabilities in H. salinarum despite stability at the single nucleotide level, these results suggest that genomic plasticity mediated by IS element activity can provide a source of phenotypic innovation in extreme environments.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global variation in copy number in the human genome.

            Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ISfinder: the reference centre for bacterial insertion sequences

              ISfinder () is a dedicated database for bacterial insertion sequences (ISs). It has superseded the Stanford reference center. One of its functions is to assign IS names and to provide a focal point for a coherent nomenclature. It is also the repository for ISs. Each new IS is indexed together with information such as its DNA sequence and open reading frames or potential coding sequences, the sequence of the ends of the element and target sites, its origin and distribution together with a bibliography where available. Another objective is to continuously monitor ISs to provide updated comprehensive groupings or families and to provide some insight into their phylogenies. The site also contains extensive background information on ISs and transposons in general. Online tools are gradually being added. At present an online Blast facility against the entire bank is available. But additional features will include alignment capability, PsiBLAST and HMM profiles. ISfinder also includes a section on bacterial genomes and is involved in annotating the IS content of these genomes. Finally, this database is currently recommended by several microbiology journals for registration of new IS elements before their publication.
                Bookmark

                Author and article information

                Journal
                Microb Genom
                Microb Genom
                mgen
                mgen
                Microbial Genomics
                Microbiology Society
                2057-5858
                September 2018
                24 August 2018
                24 August 2018
                : 4
                : 9
                : e000210
                Affiliations
                [ 1]University Program in Genetics and Genomics, Duke University , Durham, NC, USA
                [ 2]Biology Department, Duke University , Durham, NC, USA
                [ 3]Center for Genomics and Computational Biology, Duke University , Durham, NC 27708, USA
                Author notes
                *Correspondence: Amy K. Schmid, amy.schmid@ 123456duke.edu
                Article
                mgen000210
                10.1099/mgen.0.000210
                6202454
                30142055
                3d77fc07-b1b6-4ddd-b1c3-8d7e85157d49
                © 2018 The Authors

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 April 2018
                : 19 July 2018
                Funding
                Funded by: National Science Foundation
                Award ID: 1642283
                Funded by: National Science Foundation
                Award ID: 1052290
                Funded by: National Science Foundation
                Award ID: 1417750
                Funded by: National Science Foundation
                Award ID: 1651117
                Funded by: National Science Foundation
                Award ID: 1615685
                Categories
                Research Article
                Systems Microbiology: Large-scale Comparative Genomics
                Custom metadata
                0

                archaea,genomic plasticity,copy number variation,computational genomics

                Comments

                Comment on this article