10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phylogenetic group determination and plasmid virulence gene profiles of colistin-resistant Escherichia coli originated from the broiler meat supply chain in Bogor, Indonesia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Aim:

          Pathogenic Escherichia coli contamination along the broiler meat supply chain is a serious public health concern. This bacterial infection with multidrug-resistant can lead to treatment failure. Several studies have revealed that avian pathogenic E. coli (APEC) and human extraintestinal pathogenic E. coli (ExPEC) showed a close genetic relationship and may share virulence genes. This study aimed to determine the phylogenetic group and virulence gene profiles in colistin-resistant E. coli obtained from the broiler meat supply chain in Bogor, West Java, Indonesia.

          Materials and Methods:

          Fifty-eight archive isolates originated from the cloacal swab, litter, drinking water, inside plucker swab, fresh meat at small scale poultry slaughterhouses, and traditional markets were used in this study. All the isolates were characterized by a polymerase chain reaction to determine the phylogenetic group (A, B1, B2, or D) and virulence gene profiles with APEC marker genes ( iutA, hlyF, iss, iroN, and ompT).

          Results:

          Phylogenetic grouping revealed that the isolates belong to A group (34.48%), D group (34.48%), B1 group (17.24%), and B2 group (13.79%). The virulence gene prevalence was as follows: iutA (36%), hlyF (21%), ompT (21%), iroN (10%), and iss (9%). The B2 group presented with more virulence genes combinations. iroN, hlyF, and ompT genes were positively associated with the B2 group (p≤0.05).

          Conclusion:

          Our results highlight the role of colistin-resistant E. coli originated from the broiler meat supply chain as a potential reservoir for human ExPEC virulence genes.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid and simple determination of the Escherichia coli phylogenetic group.

          Phylogenetic analysis has shown that Escherichia coli is composed of four main phylogenetic groups (A, B1, B2, and D) and that virulent extra-intestinal strains mainly belong to groups B2 and D. Actually, phylogenetic groups can be determined by multilocus enzyme electrophoresis or ribotyping, both of which are complex, time-consuming techniques. We describe a simple and rapid phylogenetic grouping technique based on triplex PCR. The method, which uses a combination of two genes (chuA and yjaA) and an anonymous DNA fragment, was tested with 230 strains and showed excellent correlation with reference methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports

            Extraintestinal pathogenic E. coli (ExPEC) are facultative pathogens that are part of the normal human intestinal flora. The ExPEC group includes uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), sepsis-associated E. coli (SEPEC), and avian pathogenic E. coli (APEC). Virulence factors (VF) related to the pathogenicity of ExPEC are numerous and have a wide range of activities, from those related to bacteria colonization to those related to virulence, including adhesins, toxins, iron acquisition factors, lipopolysaccharides, polysaccharide capsules, and invasins, which are usually encoded on pathogenicity islands (PAIs), plasmids and other mobile genetic elements. Mechanisms underlying the dynamics of ExPEC transmission and the selection of virulent clones are still poorly understood and require further research. The time shift between colonization of ExPEC and the development of infection remains problematic in the context of establishing the relation between consumption of contaminated food and the appearance of first disease symptoms. What appears to be most difficult is to prove that ExPEC strains cause disease symptoms and to examine the mechanism of transition from the asymptomatic colonization of the intestines to the spreading of the bacteria outside the digestive system. A significant problem for researchers who are trying to ascribe ExPEC transmission to food, people or the environment is to draw the distinction between colonization of ExPEC and infection. Food safety is an important challenge for public health both at the production stage and in the course of its processing and distribution. Examination of the genetic similarity of ExPEC strains will allow to determine their origin from different sources. Many levels of genotyping have been proposed in which the typing of strains, plasmids and genes is compared in order to obtain a more complete picture of this complex problem. The aim of our study was to characterize E. coli strains isolated from humans, animals and food for the presence of bacterial genes encoding virulence factors such as toxins, and iron acquisition systems (siderophores) in the context of an increasing spread of ExPEC infections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends.

              Extraintestinal pathogenic Escherichia coli (ExPEC) constitutes ongoing health concerns for women, newborns, elderly, and immunocompromised individuals due to increased numbers of urinary tract infections (UTIs), newborn meningitis, abdominal sepsis, and septicemia. E. coli remains the leading cause of UTIs, with recent investigations reporting the emergence of E. coli as the predominant cause of nosocomial and neonatal sepsis infections. This shift from the traditional Gram-positive bacterial causes of nosocomial and neonatal sepsis infections could be attributed to the use of intrapartum chemoprophylaxis against Gram-positive bacteria and the appearance of antibiotic (ATB) resistance in E. coli. While ExPEC strains cause significant healthcare concerns, these bacteria also infect chickens and cause the poultry industry economic losses due to costs of containment, mortality, and disposal of carcasses. To circumvent ExPEC-related costs, ATBs are commonly used in the poultry industry to prevent/treat microbial infections and promote growth and performance. In an unfortunate linkage, chicken products are suspected to be a source of foodborne ExPEC infections and ATB resistance in humans. Therefore, the emergence of multidrug resistance (MDR) (resistance to three or more classes of antimicrobial agents) among avian E. coli has created major economic and health concerns, affecting both human healthcare and poultry industries. Increased numbers of immunocompromised individuals, including the elderly, coupled with MDR among ExPEC strains, will continue to challenge the treatment of ExPEC infections and likely lead to increased treatment costs. With ongoing complications due to emerging ATB resistance, novel treatment strategies are necessary to control ExPEC infections. Recognizing and treating the zoonotic risk posed by ExPEC would greatly enhance food safety and positively impact human health.
                Bookmark

                Author and article information

                Journal
                Vet World
                Vet World
                Veterinary World
                Veterinary World (India )
                0972-8988
                2231-0916
                September 2020
                05 September 2020
                : 13
                : 9
                : 1807-1814
                Affiliations
                [1 ]Department of Animal Disease and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University-Bogor, Indonesia
                [2 ]National Veterinary Drug Assay Laboratory, Directorate General of Livestock and Animal Health, Ministry of Agriculture of the Republic of Indonesia, Indonesia
                Author notes
                Article
                Vetworld-13-1807
                10.14202/vetworld.2020.1807-1814
                7566268
                33132591
                3d8443d3-b6a0-420d-9e04-b38c7c7ef04c
                Copyright: © Rahayuningtyas, et al.

                Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 13 April 2020
                : 21 July 2020
                Categories
                Research Article

                broiler supply chain,escherichia coli,phylogenetic group,virulence gene

                Comments

                Comment on this article