40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Self-Assembling Nanoparticles Containing Dexamethasone as a Novel Therapy in Allergic Airways Inflammation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanocarriers can deliver a wide variety of drugs, target them to sites of interest, and protect them from degradation and inactivation by the body. They have the capacity to improve drug action and decrease undesirable systemic effects. We have previously developed a well-defined non-toxic PEG-dendritic block telodendrimer for successful delivery of chemotherapeutics agents and, in these studies, we apply this technology for therapeutic development in asthma. In these proof-of-concept experiments, we hypothesized that dexamethasone contained in self-assembling nanoparticles (Dex-NP) and delivered systemically would target the lung and decrease allergic lung inflammation and airways hyper-responsiveness to a greater degree than equivalent doses of dexamethasone (Dex) alone. We found that ovalbumin (Ova)-exposed mice treated with Dex-NP had significantly fewer total cells (2.78±0.44×10 5 (n = 18) vs. 5.98±1.3×10 5 (n = 13), P<0.05) and eosinophils (1.09±0.28×10 5 (n = 18) vs. 2.94±0.6×10 5 (n = 12), p<0.05) in the lung lavage than Ova-exposed mice alone. Also, lower levels of the inflammatory cytokines IL-4 (3.43±1.2 (n = 11) vs. 8.56±2.1 (n = 8) pg/ml, p<0.05) and MCP-1 (13.1±3.6 (n = 8) vs. 28.8±8.7 (n = 10) pg/ml, p<0.05) were found in lungs of the Dex-NP compared to control, and they were not lower in the Dex alone group. In addition, respiratory system resistance was lower in the Dex-NP compared to the other Ova-exposed groups suggesting a better therapeutic effect on airways hyperresponsiveness. Taken together, these findings from early-stage drug development studies suggest that the encapsulation and protection of anti-inflammatory agents such as corticosteroids in nanoparticle formulations can improve efficacy. Further development of novel drugs in nanoparticles is warranted to explore potential treatments for chronic inflammatory diseases such as asthma.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Lebrikizumab treatment in adults with asthma.

          Many patients with asthma have uncontrolled disease despite treatment with inhaled glucocorticoids. One potential cause of the variability in response to treatment is heterogeneity in the role of interleukin-13 expression in the clinical asthma phenotype. We hypothesized that anti-interleukin-13 therapy would benefit patients with asthma who had a pretreatment profile consistent with interleukin-13 activity. We conducted a randomized, double-blind, placebo-controlled study of lebrikizumab, a monoclonal antibody to interleukin-13, in 219 adults who had asthma that was inadequately controlled despite inhaled glucocorticoid therapy. The primary efficacy outcome was the relative change in prebronchodilator forced expiratory volume in 1 second (FEV(1)) from baseline to week 12. Among the secondary outcomes was the rate of asthma exacerbations through 24 weeks. Patient subgroups were prespecified according to baseline type 2 helper T-cell (Th2) status (assessed on the basis of total IgE level and blood eosinophil count) and serum periostin level. At baseline, patients had a mean FEV(1) that was 65% of the predicted value and were taking a mean dose of inhaled glucocorticoids of 580 μg per day; 80% were also taking a long-acting beta-agonist. At week 12, the mean increase in FEV(1) was 5.5 percentage points higher in the lebrikizumab group than in the placebo group (P = 0.02). Among patients in the high-periostin subgroup, the increase from baseline FEV(1) was 8.2 percentage points higher in the lebrikizumab group than in the placebo group (P = 0.03). Among patients in the low-periostin subgroup, the increase from baseline FEV(1) was 1.6 percentage points higher in the lebrikizumab group than in the placebo group (P = 0.61). Musculoskeletal side effects were more common with lebrikizumab than with placebo (13.2% vs. 5.4%, P = 0.045). Lebrikizumab treatment was associated with improved lung function. Patients with high pretreatment levels of serum periostin had greater improvement in lung function with lebrikizumab than did patients with low periostin levels. (Funded by Genentech; ClinicalTrials.gov number, NCT00930163 .).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles.

            To systematically elucidate the effect of surface charge on the cellular uptake and in vivo fate of PEG-oligocholic acid based micellar nanoparticles (NPs), the distal PEG termini of monomeric PEG-oligocholic acid dendrimers (telodendrimers) are each derivatized with different number (n = 0, 1, 3 and 6) of anionic aspartic acids (negative charge) or cationic lysines (positive charge). Under aqueous condition, these telodendrimers self-assemble to form a series of micellar NPs with various surface charges, but with similar particle sizes. NPs with high surface charge, either positive or negative, were taken up more efficiently by RAW 264.7 murine macrophages after opsonization in fresh mouse serum. Mechanistic studies of cellular uptake of NPs indicated that several distinct endocytic pathways (e.g., clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis) were involved in the cellular uptake process. After their cellular uptake, the majority of NPs were found to localize in the lysosome. Positively charged NPs exhibited dose-dependent hemolytic activities and cytotoxicities against RAW 264.7 cells proportional to the positive surface charge densities; whereas negatively charged NPs did not show obvious hemolytic and cytotoxic properties. In vivo biodistribution studies demonstrated that undesirable liver uptake was very high for highly positively or negatively charged NPs, which is likely due to active phagocytosis by macrophages (Kupffer cells) in the liver. In contrast, liver uptake was very low but tumor uptake was very high when the surface charge of NPs was slightly negative. Based on these studies, we can conclude that slightly negative charge may be introduced to the NPs surface to reduce the undesirable clearance by the reticuloendothelial system (RES) such as liver, improve the blood compatibility, thus deliver the anti-cancer drugs more efficiently to the tumor sites. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma.

              IL-4 and IL-13 share many biological functions important in the development of allergic airway inflammation and are implicated in the pathogenesis of asthma. AMG 317 is a fully human monoclonal antibody to IL-4Ralpha that blocks both IL-4 and IL-13 pathways. To evaluate efficacy and safety of AMG 317 in patients with moderate to severe asthma. In this phase 2, randomized, double-blind, placebo-controlled study, patients received weekly subcutaneous injections of placebo or AMG 317 (75-300 mg) for 12 weeks, followed by a 4-week follow-up period. The primary endpoint was change from baseline at Week 12 in Asthma Control Questionnaire (ACQ) symptom score. Mean ACQ change (SE) was -0.49 (0.09) in placebo (n = 74), and -0.43 (0.11), -0.58 (0.12), and -0.70 (0.09) in the AMG 317 75 mg (n = 73), 150 mg (n = 73), and 300 mg (n = 74) groups, respectively (treatment effect P = 0.25). No statistically significant differences were observed in the secondary endpoints. Numerical decreases in number of and time to exacerbations were noted in patients receiving AMG 317 150 mg and 300 mg. Preplanned analyses by tertile of baseline ACQ revealed that patients with higher baseline ACQ scores (>or=2.86) were more likely to respond to AMG 317. Serious adverse events were reported in three patients, each noted as not related to study drug. AMG 317 did not demonstrate clinical efficacy across the overall group of patients. Clinically significant improvements were observed in several outcome measures in patients with higher baseline ACQ scores. AMG 317 was safe and well tolerated in this study population. Clinical trial registered with www.clinicaltrials.gov (NCT 00436670).
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                25 October 2013
                : 8
                : 10
                : e77730
                Affiliations
                [1 ]Department of Internal Medicine, University of California Davis, Davis, California, United States of America
                [2 ]Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California, United States of America
                University ofTennessee Health Science Center, United States of America
                Author notes

                Competing Interests: Kit S. Lam is the founding scientist of Lamno Therapeutics, a start-up company focused on cancer drug development. Dr. Lam’s association with this company does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: NJK JMB J. Luo KSL. Performed the experiments: NJK JMB J. Lee J. Luo LMF. Analyzed the data: NJK JMB LMF AAZ KSL. Contributed reagents/materials/analysis tools: J. Lee J. Luo LMF AAZ. Wrote the paper: NJK JMB J. Lee J. Luo AAZ KSL. Edited draft and approved final manuscript: NJK JMB J. Lee J. Luo LMF AAZ KSL.

                [¤]

                Current address: Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, United States of America

                Article
                PONE-D-13-09734
                10.1371/journal.pone.0077730
                3808398
                24204939
                3d865ec8-cd5b-4f0b-a81c-47be5571b559
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 March 2013
                : 4 September 2013
                Page count
                Pages: 11
                Funding
                The funding for this work was through grants from National Heart, Lung and Blood Institute (NHLBI) (HL105573) to Nicholas J. Kenyon and National Institute of Biomedical Imaging and Bioengineering (NIBIB) (EB012569) to Kit S. Lam. Jennifer Bratt was supported by T32 training Grants (HL-07013 and ES-07059). Amir Zeki was supported by National Center for Advancing Translational Sciences (NCATS) CTSC KL2 grant (TR000134). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article