35
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LPS-induced Murine Neuroinflammation Model: Main Features and Suitability for Pre-clinical Assessment of Nutraceuticals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuroinflammation is an important feature in the pathogenesis and progression of neurodegenerative diseases such as Alzheimer´s disease (AD), Parkinson´s disease (PD), frontotemporal dementia and amyotrophic lateral sclerosis. Based on current knowledge in the field, suggesting that targeting peripheral inflammation could be a promising additional treatment/prevention approach for neurodegenerative diseases, drugs and natural products with anti-inflammatory properties have been evaluated in animal models of neuroinflammation and neurodegeneration. In this review, we provide an extensive analysis of one of the most important and widely-used animal models of peripherally induced neuroinflammation and neurodegeneration - lipopolysaccharide (LPS)-treated mice, and address the data reproducibility in published research. We also summarize briefly basic features of various natural products, nutraceuticals, with known anti-inflammatory effects and present an overview of data on their therapeutic potential for reducing neuroinflammation in LPS-treated mice.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration.

          Inflammation is implicated in the progressive nature of neurodegenerative diseases, such as Parkinson's disease, but the mechanisms are poorly understood. A single systemic lipopolysaccharide (LPS, 5 mg/kg, i.p.) or tumor necrosis factor alpha (TNFalpha, 0.25 mg/kg, i.p.) injection was administered in adult wild-type mice and in mice lacking TNFalpha receptors (TNF R1/R2(-/-)) to discern the mechanisms of inflammation transfer from the periphery to the brain and the neurodegenerative consequences. Systemic LPS administration resulted in rapid brain TNFalpha increase that remained elevated for 10 months, while peripheral TNFalpha (serum and liver) had subsided by 9 h (serum) and 1 week (liver). Systemic TNFalpha and LPS administration activated microglia and increased expression of brain pro-inflammatory factors (i.e., TNFalpha, MCP-1, IL-1beta, and NF-kappaB p65) in wild-type mice, but not in TNF R1/R2(-/-) mice. Further, LPS reduced the number of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra (SN) by 23% at 7-months post-treatment, which progressed to 47% at 10 months. Together, these data demonstrate that through TNFalpha, peripheral inflammation in adult animals can: (1) activate brain microglia to produce chronically elevated pro-inflammatory factors; (2) induce delayed and progressive loss of DA neurons in the SN. These findings provide valuable insight into the potential pathogenesis and self-propelling nature of Parkinson's disease. (c) 2007 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice.

            Transgenic mice overexpressing the 695-amino acid isoform of human Alzheimer beta-amyloid (Abeta) precursor protein containing a Lys670 --> Asn, Met671 --> Leu mutation had normal learning and memory in spatial reference and alternation tasks at 3 months of age but showed impairment by 9 to 10 months of age. A fivefold increase in Abeta(1-40) and a 14-fold increase in Abeta(1-42/43) accompanied the appearance of these behavioral deficits. Numerous Abeta plaques that stained with Congo red dye were present in cortical and limbic structures of mice with elevated amounts of Abeta. The correlative appearance of behavioral, biochemical, and pathological abnormalities reminiscent of Alzheimer's disease in these transgenic mice suggests new opportunities for exploring the pathophysiology and neurobiology of this disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Of mice and not men: differences between mouse and human immunology.

              Mice are the experimental tool of choice for the majority of immunologists and the study of their immune responses has yielded tremendous insight into the workings of the human immune system. However, as 65 million years of evolution might suggest, there are significant differences. Here we outline known discrepancies in both innate and adaptive immunity, including: balance of leukocyte subsets, defensins, Toll receptors, inducible NO synthase, the NK inhibitory receptor families Ly49 and KIR, FcR, Ig subsets, the B cell (BLNK, Btk, and lambda5) and T cell (ZAP70 and common gamma-chain) signaling pathway components, Thy-1, gammadelta T cells, cytokines and cytokine receptors, Th1/Th2 differentiation, costimulatory molecule expression and function, Ag-presenting function of endothelial cells, and chemokine and chemokine receptor expression. We also provide examples, such as multiple sclerosis and delayed-type hypersensitivity, where complex multicomponent processes differ. Such differences should be taken into account when using mice as preclinical models of human disease.
                Bookmark

                Author and article information

                Journal
                Curr Neuropharmacol
                Curr Neuropharmacol
                CN
                Current Neuropharmacology
                Bentham Science Publishers
                1570-159X
                1875-6190
                February 2016
                February 2016
                : 14
                : 2
                : 155-164
                Affiliations
                Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
                Author notes
                [* ]Address correspondence to this author at the Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico; Tel: 5255-56223151; Fax: 56223369; E-mail: gokar@ 123456unam.mx
                Article
                CN-14-155
                10.2174/1570159X14666151204122017
                4825946
                26639457
                3d9074b8-6153-4b44-8085-352c198267b1
                © 2016 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 4 June 2015
                : 2 November 2015
                : 4 December 2015
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                astrocytes,lps,microglia,neurodegeneration,neuroinflammation,nutraceuticals.

                Comments

                Comment on this article