11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Contrasting Effects of Urokinase and Tissue-Type Plasminogen Activators on Neointima Formation and Vessel Remodelling after Arterial Injury

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Urokinase-type plasminogen activator (uPA) has been implicated in neointima formation and arterial lumen narrowing after angioplasty. To determine the specificity of the action of uPA on vessel remodelling after arterial injury we compared the effects of the recombinant urokinase- and tissue-type plasminogen activators on vessel morphology, cell migration and proliferation. We used a standard model of the balloon catheter injury of the rat carotid artery followed by the periadventitial application to the injured vessel of the one of the recombinant PAs or recombinant α<sub>2</sub>-antiplasmin (α-AP) in pluronic gel with further immunohistochemistry and morphometry. The perivascular application of α-AP immediately after injury attenuated the healing response, significantly reducing neointima size and neointimal SMC numbers. The periadventitial application to the injured artery of recombinant uPA stimulated neointima formation as well as cell proliferation and migration in vivo and induced greater reductions in lumen size than injury alone. In contrast, recombinant tissue-type plasminogen activator reduced the number of neointimal smooth muscle cells and the neointimal area and increased both the lumen area and the area encompassed by the external elastic laminae after balloon catheter injury of the rat carotid artery. In the meantime both PAs nearly doubled medial and adventitial SMC numbers in the vessels. We conclude that the ability to stimulate neointima formation and inward arterial remodelling is a specific property for urokinase plasminogen activator that could not be mimicked by tissue-type plasminogen activator.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation.

          The molecular mechanisms predisposing to atherosclerotic aneurysm formation remain undefined. Nevertheless, rupture of aortic aneurysms is a major cause of death in Western societies, with few available treatments and poor long-term prognosis. Indirect evidence suggests that matrix metalloproteinases (MMPs) and plasminogen activators (PAs) are involved in its pathogenesis. MMPs are secreted as inactive zymogens (pro-MMPs), requiring activation in the extracellular compartment. Plasmin, generated from the zymogen plasminogen by tissue-type plasminogen activator (t-PA) or urokinase-type plasminogen activator (u-PA; refs 14,15), has been proposed as a possible activator in vitro, but evidence for such a role in vivo is lacking. Analysis of atherosclerotic aorta in mice with a deficiency of apoliprotein E (Apoe-/-; ref. 18), singly or combined with a deficiency of t-PA (Apoe-/-:Plat-/-) or of u-PA (Apoe-/-:Plau-/-; ref. 19), indicated that deficiency of u-PA protected against media destruction and aneurysm formation, probably by means of reduced plasmin-dependent activation of pro-MMPs. This genetic evidence suggests that plasmin is a pathophysiologically significant activator of pro-MMPs in vivo and may have implications for the design of therapeutic strategies to prevent aortic-wall destruction by controlling Plau gene function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor complexes

            Receptor-bound urokinase-type plasminogen activator (uPA) remains associated to the surface of human monocytes for many hours. Monocytes induced to migrate in a chemotactic gradient of f-Met-Leu-Phe rapidly polarize their uPA receptors to the leading front of the cells. Receptor-bound enzyme can be inhibited by plasminogen activator inhibitor 2 (PAI-2), with a kinetics comparable to that determined for the free enzyme, and uPA/PAI-2 complexes can bind to the uPA receptor. In contrast to the active enzyme, the uPA/PAI-2 complex is rapidly cleared from the monocyte cell surface; this involves an initial cleavage of the complex at the cell surface, followed by endocytosis and degradation. These results indicate that the uPA receptor can function both to focus plasmin-mediated extracellular matrix degradation in front of migrating cells, and to target uPA/PAI-2 enzyme/inhibitor complexes for degradation; they suggest that this receptor is a key determinant in the control of uPA-catalyzed extracellular proteolysis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Inflammation, neointimal hyperplasia, and restenosis: as the leukocytes roll, the arteries thicken.

              K Shah (2003)
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2004
                June 2004
                30 June 2004
                : 41
                : 3
                : 268-276
                Affiliations
                aMolecular Endocrinology Laboratory, Institute of Experimental Cardiology, Cardiology Research Center, Moscow, Russia; bBaker Medical Research Institute, Melbourne, Australia; cCenter for Cardiovascular Research, University Rochester Medical Center, Rochester, N.Y., USA
                Article
                78825 J Vasc Res 2004;41:268–276
                10.1159/000078825
                15192267
                3d95db07-bac4-4764-ab14-4120b3445f7b
                © 2004 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 27 October 2003
                : 06 April 2004
                Page count
                Figures: 4, Tables: 1, References: 42, Pages: 9
                Categories
                Research Paper

                General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
                Vessel injury,Plasminogen activators,Migration,Proteolysis,Neointima

                Comments

                Comment on this article