274
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Fibroblast Growth Factor signaling pathway

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc.

          Related collections

          Most cited references686

          • Record: found
          • Abstract: found
          • Article: not found

          Heparan sulphate proteoglycans fine-tune mammalian physiology.

          Heparan sulphate proteoglycans reside on the plasma membrane of all animal cells studied so far and are a major component of extracellular matrices. Studies of model organisms and human diseases have demonstrated their importance in development and normal physiology. A recurrent theme is the electrostatic interaction of the heparan sulphate chains with protein ligands, which affects metabolism, transport, information transfer, support and regulation in all organ systems. The importance of these interactions is exemplified by phenotypic studies of mice and humans bearing mutations in the core proteins or the biosynthetic enzymes responsible for assembling the heparan sulphate chains.
            • Record: found
            • Abstract: found
            • Article: not found

            Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family.

            In mammals, fibroblast growth factors (FGFs) are encoded by 22 genes. FGFs bind and activate alternatively spliced forms of four tyrosine kinase FGF receptors (FGFRs 1-4). The spatial and temporal expression patterns of FGFs and FGFRs and the ability of specific ligand-receptor pairs to actively signal are important factors regulating FGF activity in a variety of biological processes. FGF signaling activity is regulated by the binding specificity of ligands and receptors and is modulated by extrinsic cofactors such as heparan sulfate proteoglycans. In previous studies, we have engineered BaF3 cell lines to express the seven principal FGFRs and used these cell lines to determine the receptor binding specificity of FGFs 1-9 by using relative mitogenic activity as the readout. Here we have extended these semiquantitative studies to assess the receptor binding specificity of the remaining FGFs 10-23. This study completes the mitogenesis-based comparison of receptor specificity of the entire FGF family under standard conditions and should help in interpreting and predicting in vivo biological activity.
              • Record: found
              • Abstract: found
              • Article: not found

              Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23.

              (2000)
              Proper serum phosphate concentrations are maintained by a complex and poorly understood process. Identification of genes responsible for inherited disorders involving disturbances in phosphate homeostasis may provide insight into the pathways that regulate phosphate balance. Several hereditary disorders of isolated phosphate wasting have been described, including X-linked hypophosphataemic rickets (XLH), hypophosphataemic bone disease (HBD), hereditary hypophosphataemic rickets with hypercalciuria (HHRH) and autosomal dominant hypophosphataemic rickets (ADHR). Inactivating mutations of the gene PHEX, encoding a member of the neutral endopeptidase family of proteins, are responsible for XLH (refs 6,7). ADHR (MIM 193100) is characterized by low serum phosphorus concentrations, rickets, osteomalacia, lower extremity deformities, short stature, bone pain and dental abscesses. Here we describe a positional cloning approach used to identify the ADHR gene which included the annotation of 37 genes within 4 Mb of genomic sequence. We identified missense mutations in a gene encoding a new member of the fibroblast growth factor (FGF) family, FGF23. These mutations in patients with ADHR represent the first mutations found in a human FGF gene.

                Author and article information

                Journal
                Wiley Interdiscip Rev Dev Biol
                Wiley Interdiscip Rev Dev Biol
                wdev
                Wiley Interdisciplinary Reviews. Developmental Biology
                John Wiley & Sons, Inc. (Hoboken, USA )
                1759-7684
                1759-7692
                May 2015
                13 March 2015
                : 4
                : 3
                : 215-266
                Affiliations
                [1 ]Department of Developmental Biology, Washington University School of Medicine St. Louis, MO, USA
                [2 ]Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo, Kyoto, Japan
                Author notes
                * Correspondence to: dornitz@ 123456wustl.edu

                Conflict of interest: The authors have declared no conflicts of interest for this article.

                Article
                10.1002/wdev.176
                4393358
                25772309
                3dad7b86-1fb7-4100-917c-3c15b1018a3a
                © 2015 Wiley Periodicals, Inc.
                History
                Categories
                Advanced Reviews

                Comments

                Comment on this article

                Related Documents Log