22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spin transfer torque devices utilizing the giant spin Hall effect of tungsten

      Preprint
        , , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report a giant spin Hall effect (SHE) in {\beta}-W thin films. Using spin torque induced ferromagnetic resonance with a {\beta}-W/CoFeB bilayer microstrip we determine the spin Hall angle to be |\theta|=0.30\pm0.02, large enough for an in-plane current to efficiently reverse the orientation of an in-plane magnetized CoFeB free layer of a nanoscale magnetic tunnel junction adjacent to a thin {\beta}-W layer. From switching data obtained with such 3-terminal devices we independently determine |\theta|=0.33\pm0.06. We also report variation of the spin Hall switching efficiency with W layers of different resistivities and hence of variable ({\alpha} and {\beta}) phase composition.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Spin torque switching with the giant spin Hall effect of tantalum

          We report a giant spin Hall effect (SHE) in {\beta}-Ta that generates spin currents intense enough to induce efficient spin-transfer-torque switching of ferromagnets, thereby providing a new approach for controlling magnetic devices that can be superior to existing technologies. We quantify this SHE by three independent methods and demonstrate spin-torque (ST) switching of both out-of-plane and in-plane magnetized layers. We implement a three-terminal device that utilizes current passing through a low impedance Ta-ferromagnet bilayer to effect switching of a nanomagnet, with a higher-impedance magnetic tunnel junction for read-out. The efficiency and reliability of this device, together with its simplicity of fabrication, suggest that this three-terminal SHE-ST design can eliminate the main obstacles currently impeding the development of magnetic memory and non-volatile spin logic technologies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Spin Torque Ferromagnetic Resonance Induced by the Spin Hall Effect

            We demonstrate that the spin Hall effect in a thin film with strong spin-orbit scattering can excite magnetic precession in an adjacent ferromagnetic film. The flow of alternating current through a Pt/NiFe bilayer generates an oscillating transverse spin current in the Pt, and the resultant transfer of spin angular momentum to the NiFe induces ferromagnetic resonance (FMR) dynamics. The Oersted field from the current also generates an FMR signal but with a different symmetry. The ratio of these two signals allows a quantitative determination of the spin current and the spin Hall angle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Room Temperature Reversible Spin Hall Effect

              Reversible spin Hall effect comprising the "direct" and "inverse" spin Hall effects was successfully detected at room temperature. This experimental demonstration proves the fundamental relations called Onsager reciprocal relations between spin and charge currents. A platinum wire with a strong spin-orbit interaction is used not only as a spin current absorber but also as a spin current source in the present lateral structure specially designed for clear detection of both charge and spin accumulations via the spin-orbit interaction. The obtained spin Hall conductivity is much larger than the reported value of Aluminum wire because of the larger spin-orbit interaction.
                Bookmark

                Author and article information

                Journal
                08 August 2012
                Article
                10.1063/1.4753947
                1208.1711
                3dadace5-9125-44d1-b7a1-2f000a73d30d

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cond-mat.mtrl-sci cond-mat.mes-hall

                Comments

                Comment on this article