39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Middle East respiratory syndrome coronavirus (MERS-CoV) is the causative agent of a severe respiratory disease associated with more than 2468 human infections and over 851 deaths in 27 countries since 2012. There are no approved treatments for MERS-CoV infection although a combination of lopinavir, ritonavir and interferon beta (LPV/RTV-IFNb) is currently being evaluated in humans in the Kingdom of Saudi Arabia. Here, we show that remdesivir (RDV) and IFNb have superior antiviral activity to LPV and RTV in vitro. In mice, both prophylactic and therapeutic RDV improve pulmonary function and reduce lung viral loads and severe lung pathology. In contrast, prophylactic LPV/RTV-IFNb slightly reduces viral loads without impacting other disease parameters. Therapeutic LPV/RTV-IFNb improves pulmonary function but does not reduce virus replication or severe lung pathology. Thus, we provide in vivo evidence of the potential for RDV to treat MERS-CoV infections.

          Abstract

          Remdesivir (RDV) is a broad-spectrum antiviral drug with activity against MERS coronavirus, but in vivo efficacy has not been evaluated. Here, the authors show that RDV has superior anti-MERS activity in vitro and in vivo compared to combination therapy with lopinavir, ritonavir and interferon beta and reduces severe lung pathology.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals.

          Acute lung injury (ALI) is well defined in humans, but there is no agreement as to the main features of acute lung injury in animal models. A Committee was organized to determine the main features that characterize ALI in animal models and to identify the most relevant methods to assess these features. We used a Delphi approach in which a series of questionnaires were distributed to a panel of experts in experimental lung injury. The Committee concluded that the main features of experimental ALI include histological evidence of tissue injury, alteration of the alveolar capillary barrier, presence of an inflammatory response, and evidence of physiological dysfunction; they recommended that, to determine if ALI has occurred, at least three of these four main features of ALI should be present. The Committee also identified key "very relevant" and "somewhat relevant" measurements for each of the main features of ALI and recommended the use of least one "very relevant" measurement and preferably one or two additional separate measurements to determine if a main feature of ALI is present. Finally, the Committee emphasized that not all of the measurements listed can or should be performed in every study, and that measurements not included in the list are by no means "irrelevant." Our list of features and measurements of ALI is intended as a guide for investigators, and ultimately investigators should choose the particular measurements that best suit the experimental questions being addressed as well as take into consideration any unique aspects of the experimental design.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus

            Summary Objectives Middle East respiratory syndrome coronavirus (MERS-CoV) has emerged to cause fatal infections in patients in the Middle East and traveler-associated secondary cases in Europe and Africa. Person-to-person transmission is evident in outbreaks involving household and hospital contacts. Effective antivirals are urgently needed. Methods We used small compound-based forward chemical genetics to screen a chemical library of 1280 known drugs against influenza A virus in Biosafety Level-2 laboratory. We then assessed the anti-MERS-CoV activities of the identified compounds and of interferons, nelfinavir, and lopinavir because of their reported anti-coronavirus activities in terms of cytopathic effect inhibition, viral yield reduction, and plaque reduction assays in Biosafety Level-3 laboratory. Results Ten compounds were identified as primary hits in high-throughput screening. Only mycophenolic acid exhibited low EC50 and high selectivity index. Additionally, ribavirin and interferons also exhibited in-vitro anti-MERS-CoV activity. The serum concentrations achievable at therapeutic doses of mycophenolic acid and interferon-β1b were 60–300 and 3–4 times higher than the concentrations at which in-vitro anti-MERS-CoV activities were demonstrated, whereas that of ribavirin was ∼2 times lower. Combination of mycophenolic acid and interferon-β1b lowered the EC50 of each drug by 1–3 times. Conclusions Interferon-β1b with mycophenolic acid should be considered in treatment trials of MERS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study

              Summary Background In 2015, a large outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection occurred following a single patient exposure in an emergency room at the Samsung Medical Center, a tertiary-care hospital in Seoul, South Korea. We aimed to investigate the epidemiology of MERS-CoV outbreak in our hospital. Methods We identified all patients and health-care workers who had been in the emergency room with the index case between May 27 and May 29, 2015. Patients were categorised on the basis of their exposure in the emergency room: in the same zone as the index case (group A), in different zones except for overlap at the registration area or the radiology suite (group B), and in different zones (group C). We documented cases of MERS-CoV infection, confirmed by real-time PCR testing of sputum samples. We analysed attack rates, incubation periods of the virus, and risk factors for transmission. Findings 675 patients and 218 health-care workers were identified as contacts. MERS-CoV infection was confirmed in 82 individuals (33 patients, eight health-care workers, and 41 visitors). The attack rate was highest in group A (20% [23/117] vs 5% [3/58] in group B vs 1% [4/500] in group C; p<0·0001), and was 2% (5/218) in health-care workers. After excluding nine cases (because of inability to determine the date of symptom onset in six cases and lack of data from three visitors), the median incubation period was 7 days (range 2–17, IQR 5–10). The median incubation period was significantly shorter in group A than in group C (5 days [IQR 4–8] vs 11 days [6–12]; p<0·0001). There were no confirmed cases in patients and visitors who visited the emergency room on May 29 and who were exposed only to potentially contaminated environment without direct contact with the index case. The main risk factor for transmission of MERS-CoV was the location of exposure. Interpretation Our results showed increased transmission potential of MERS-CoV from a single patient in an overcrowded emergency room and provide compelling evidence that health-care facilities worldwide need to be prepared for emerging infectious diseases. Funding None.
                Bookmark

                Author and article information

                Contributors
                sheahan@email.unc.edu
                rbaric@email.unc.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                10 January 2020
                10 January 2020
                2020
                : 11
                Affiliations
                [1 ]ISNI 0000000122483208, GRID grid.10698.36, Department of Epidemiology, , University of North Carolina at Chapel Hill, ; Chapel Hill, NC USA
                [2 ]ISNI 0000 0001 1034 1720, GRID grid.410711.2, Department of Pathology & Laboratory Medicine, , University of North Carolina, ; Chapel Hill, NC USA
                [3 ]ISNI 0000 0004 0402 1634, GRID grid.418227.a, Gilead Sciences, Inc, ; Foster City, CA USA
                [4 ]ISNI 0000 0004 1936 9916, GRID grid.412807.8, Department of Pediatrics-Infectious Diseases, Department of Pathology, Microbiology and Immunology, , Vanderbilt University Medical Center, ; Nashville, TN USA
                Article
                13940
                10.1038/s41467-019-13940-6
                6954302
                31924756
                3db9e845-f997-4fad-a554-8003686b35d1
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Funding
                Funded by: FundRef https://doi.org/10.13039/100000060, U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID);
                Award ID: 5R01AI132178
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100005564, Gilead Sciences (Gilead);
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                antiviral agents,viral pathogenesis,viral infection,drug development
                Uncategorized
                antiviral agents, viral pathogenesis, viral infection, drug development

                Comments

                Comment on this article