17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serum Concentration of Cystatin C and Risk of End-Stage Renal Disease in Diabetes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          Patients with diabetes have a high risk of end-stage renal disease (ESRD). We examined whether prediction of this outcome, according to chronic kidney disease (CKD) staging by creatinine-based estimates of the glomerular filtration rate (eGFRcreat), is improved by further staging with serum cystatin C–based estimates (eGFRcyst).

          RESEARCH DESIGN AND METHODS

          Patients with diabetes in CKD stages 1–3 were selected from three cohorts: two from Joslin Diabetes Center, one with type 1 diabetes ( N = 364) and one with type 2 diabetes ( N = 402), and the third from the Finnish Diabetic Nephropathy (FinnDiane) Study of type 1 ( N = 399). Baseline serum concentrations of creatinine and cystatin C were measured in all patients. Follow-up averaged 8–10 years and onsets of ESRD ( n = 246) and death unrelated to ESRD ( n = 159) were ascertained.

          RESULTS

          Although CKD staging by eGFRcyst was concordant with that by eGFRcreat for 62% of Joslin patients and 73% of FinnDiane patients, those given a higher stage by eGFRcyst than eGFRcreat had a significantly higher risk of ESRD than those with concordant staging in all three cohorts (hazard ratio 2.3 [95% CI 1.8–3.1]). Similarly, patients at a lower stage by eGFRcyst than by eGFRcreat had a lower risk than those with concordant staging (0.30 [0.13–0.68]). Deaths unrelated to ESRD followed the same pattern, but differences were not as large.

          CONCLUSIONS

          In patients with diabetes, CKD staging based on eGFRcyst significantly improves ESRD risk stratification based on eGFRcreat. This conclusion can be generalized to patients with type 1 and type 2 diabetes and to diabetic patients in the U.S. and Finland.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD.

          Serum cystatin C was proposed as a potential replacement for serum creatinine in glomerular filtration rate (GFR) estimation. We report the development and evaluation of GFR-estimating equations using serum cystatin C alone and serum cystatin C, serum creatinine, or both with demographic variables. Test of diagnostic accuracy. Participants screened for 3 chronic kidney disease (CKD) studies in the United States (n = 2,980) and a clinical population in Paris, France (n = 438). Measured GFR (mGFR). Estimated GFR using the 4 new equations based on serum cystatin C alone, serum cystatin C, serum creatinine, or both with age, sex, and race. New equations were developed by using linear regression with log GFR as the outcome in two thirds of data from US studies. Internal validation was performed in the remaining one third of data from US CKD studies; external validation was performed in the Paris study. GFR was measured by using urinary clearance of iodine-125-iothalamate in the US studies and chromium-51-EDTA in the Paris study. Serum cystatin C was measured by using Dade-Behring assay, standardized serum creatinine values were used. Mean mGFR, serum creatinine, and serum cystatin C values were 48 mL/min/1.73 m(2) (5th to 95th percentile, 15 to 95), 2.1 mg/dL, and 1.8 mg/L, respectively. For the new equations, coefficients for age, sex, and race were significant in the equation with serum cystatin C, but 2- to 4-fold smaller than in the equation with serum creatinine. Measures of performance in new equations were consistent across the development and internal and external validation data sets. Percentages of estimated GFR within 30% of mGFR for equations based on serum cystatin C alone, serum cystatin C, serum creatinine, or both levels with age, sex, and race were 81%, 83%, 85%, and 89%, respectively. The equation using serum cystatin C level alone yields estimates with small biases in age, sex, and race subgroups, which are improved in equations including these variables. Study population composed mainly of patients with CKD. Serum cystatin C level alone provides GFR estimates that are nearly as accurate as serum creatinine level adjusted for age, sex, and race, thus providing an alternative GFR estimate that is not linked to muscle mass. An equation including serum cystatin C level in combination with serum creatinine level, age, sex, and race provides the most accurate estimates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes.

            Levels of proinflammatory cytokines associate with risk for developing type 2 diabetes but whether chronic inflammation contributes to the development of diabetic complications, such as ESRD, is unknown. In the 1990s, we recruited 410 patients with type 2 diabetes for studies of diabetic nephropathy and recorded their characteristics at enrollment. During 12 years of follow-up, 59 patients developed ESRD (17 per 1000 patient-years) and 84 patients died without ESRD (24 per 1000 patient-years). Plasma markers of systemic inflammation, endothelial dysfunction, and the TNF pathway were measured in the study entry samples. Of the examined markers, only TNF receptors 1 and 2 (TNFR1 and TNFR2) associated with risk for ESRD. These two markers were highly correlated, but ESRD associated more strongly with TNFR1. The cumulative incidence of ESRD for patients in the highest TNFR1 quartile was 54% after 12 years but only 3% for the other quartiles (P<0.001). In Cox proportional hazard analyses, TNFR1 predicted risk for ESRD even after adjustment for clinical covariates such as urinary albumin excretion. Plasma concentration of TNFR1 outperformed all tested clinical variables with regard to predicting ESRD. Concentrations of TNFRs moderately associated with death unrelated to ESRD. In conclusion, elevated concentrations of circulating TNFRs in patients with type 2 diabetes at baseline are very strong predictors of the subsequent progression to ESRD in subjects with and without proteinuria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality.

              A triple-marker approach for chronic kidney disease (CKD) evaluation has not been well studied. To evaluate whether combining creatinine, cystatin C, and urine albumin-to-creatinine ratio (ACR) would improve identification of risks associated with CKD compared with creatinine alone. Prospective cohort study involving 26,643 US adults enrolled in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study from January 2003 to June 2010. Participants were categorized into 8 groups defined by estimated glomerular filtration rate (GFR) determined by creatinine and by cystatin C of either <60 or ≥60 mL/min/1.73 m(2) and ACR of either <30 or ≥30 mg/g. All-cause mortality and incident end-stage renal disease with median follow-up of 4.6 years. Participants had a mean age of 65 years, 40% were black, and 54% were women. Of 26,643 participants, 1940 died and 177 developed end-stage renal disease. Among participants without CKD defined by creatinine, 24% did not have CKD by either ACR or cystatin C. Compared with those with CKD defined by creatinine alone, the hazard ratio for death in multivariable-adjusted models was 3.3 (95% confidence interval [CI], 2.0-5.6) for participants with CKD defined by creatinine and ACR; 3.2 (95% CI, 2.2-4.7) for those with CKD defined by creatinine and cystatin C, and 5.6 (95% CI, 3.9-8.2) for those with CKD defined by all biomarkers. Among participants without CKD defined by creatinine, 3863 (16%) had CKD detected by ACR or cystatin C. Compared with participants who did not have CKD by any measure, the HRs for mortality were 1.7 (95% CI, 1.4-1.9) for participants with CKD defined by ACR alone, 2.2 (95% CI, 1.9-2.7) for participants with CKD defined by cystatin C alone, and 3.0 (95% CI, 2.4-3.7) for participants with CKD defined by both measures. Risk of incident end-stage renal disease was higher among those with CKD defined by all markers (34.1 per 1000 person-years; 95% CI, 28.7-40.5 vs 0.33 per 1000 person-years; 95% CI, 0.05-2.3) for those with CKD defined by creatinine alone. The second highest end-stage renal disease rate was among persons missed by the creatinine measure but detected by both ACR and cystatin C (rate per 1000 person-years, 6.4; 95% CI, 3.6-11.3). Net reclassification improvement for death was 13.3% (P < .001) and for end-stage renal disease was 6.4% (P < .001) after adding estimated GFR cystatin C in fully adjusted models with estimated GFR creatinine and ACR. Adding cystatin C to the combination of creatinine and ACR measures improved the predictive accuracy for all-cause mortality and end-stage renal disease.
                Bookmark

                Author and article information

                Journal
                Diabetes Care
                Diabetes Care
                diacare
                dcare
                Diabetes Care
                Diabetes Care
                American Diabetes Association
                0149-5992
                1935-5548
                November 2012
                13 October 2012
                : 35
                : 11
                : 2311-2316
                Affiliations
                [1] 1Research and Clinic Divisions, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
                [2] 2Department of Medicine, Brigham and Women′s Hospital, Harvard Medical School, Boston, Massachusetts
                [3] 3Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
                [4] 4Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
                [5] 5Renal Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
                [6] 6Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
                [7] 7Division of Nephrology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
                Author notes
                Corresponding author: Andrzej S. Krolewski, andrzej.krolewski@ 123456joslin.harvard.edu .
                Article
                2220
                10.2337/dc11-2220
                3476893
                22851596
                3dbbe811-970d-432a-8041-fd7fa4e2873b
                © 2012 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 15 November 2011
                : 7 May 2012
                Categories
                Original Research
                Pathophysiology/Complications

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article