19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms

      , , , ,
      Journal of Cellular Physiology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation in atherosclerosis: from pathophysiology to practice.

          Until recently, most envisaged atherosclerosis as a bland arterial collection of cholesterol, complicated by smooth muscle cell accumulation. According to that concept, endothelial denuding injury led to platelet aggregation and release of platelet factors which would trigger the proliferation of smooth muscle cells in the arterial intima. These cells would then elaborate an extracellular matrix that would entrap lipoproteins, forming the nidus of the atherosclerotic plaque. Beyond the vascular smooth muscle cells long recognized in atherosclerotic lesions, subsequent investigations identified immune cells and mediators at work in atheromata, implicating inflammation in this disease. Multiple independent pathways of evidence now pinpoint inflammation as a key regulatory process that links multiple risk factors for atherosclerosis and its complications with altered arterial biology. Knowledge has burgeoned regarding the operation of both innate and adaptive arms of immunity in atherogenesis, their interplay, and the balance of stimulatory and inhibitory pathways that regulate their participation in atheroma formation and complication. This revolution in our thinking about the pathophysiology of atherosclerosis has now begun to provide clinical insight and practical tools that may aid patient management. This review provides an update of the role of inflammation in atherogenesis and highlights how translation of these advances in basic science promises to change clinical practice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiple biological activities of curcumin: a short review.

            Turmeric (Curcuma longa rhizomes), commonly used as a spice is well documented for its medicinal properties in Indian and Chinese systems of medicine. It has been widely used for the treatment of several diseases. Epidemiological observations, though inconclusive, are suggestive that turmeric consumption may reduce the risk of some form of cancers and render other protective biological effects in humans. These biological effects of turmeric have been attributed to its constituent curcumin that has been widely studied for its anti-inflammatory, anti-angiogenic, anti-oxidant, wound healing and anti-cancer effects. As a result of extensive epidemiological, clinical, and animal studies several molecular mechanisms are emerging that elucidate multiple biological effects of curcumin. This review summarizes the most interesting in vitro and in vivo studies on the biological effects of curcumin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors.

              The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors or statins are potent inhibitors of cholesterol biosynthesis. Several large clinical trials have demonstrated the beneficial effects of statins in the primary and secondary prevention of coronary heart disease. However, the overall clinical benefits observed with statin therapy appear to be greater than what might be expected from changes in lipid profile alone, suggesting that the beneficial effects of statins may extend beyond their effects on serum cholesterol levels. Indeed, recent experimental and clinical evidence indicates that some of the cholesterol-independent or "pleiotropic" effects of statins involve improving or restoring endothelial function, enhancing the stability of atherosclerotic plaques, and decreasing oxidative stress and vascular inflammation. Many of these pleiotropic effects of statins are mediated by their ability to block the synthesis of important isoprenoid intermediates, which serve as lipid attachments for a variety of intracellular signaling molecules. In particular, the inhibition of small GTP-binding proteins, Rho, Ras, and Rac, whose proper membrane localization and function are dependent on isoprenylation, may play an important role in mediating the direct cellular effects of statins on the vascular wall.
                Bookmark

                Author and article information

                Journal
                Journal of Cellular Physiology
                J Cell Physiol
                Wiley-Blackwell
                00219541
                January 2018
                January 06 2018
                : 233
                : 1
                : 141-152
                Article
                10.1002/jcp.25756
                28012169
                3dbff8b8-6f94-478b-bb9e-3049821c3819
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article