69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vimentin filament organization and stress sensing depend on its single cysteine residue and zinc binding

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The vimentin filament network plays a key role in cell architecture and signalling, as well as in epithelial–mesenchymal transition. Vimentin C328 is targeted by various oxidative modifications, but its role in vimentin organization is not known. Here we show that C328 is essential for vimentin network reorganization in response to oxidants and electrophiles, and is required for optimal vimentin performance in network expansion, lysosomal distribution and aggresome formation. C328 may fulfil these roles through interaction with zinc. In vitro, micromolar zinc protects vimentin from iodoacetamide modification and elicits vimentin polymerization into optically detectable structures; in cells, zinc closely associates with vimentin and its depletion causes reversible filament disassembly. Finally, zinc transport-deficient human fibroblasts show increased vimentin solubility and susceptibility to disruption, which are restored by zinc supplementation. These results unveil a critical role of C328 in vimentin organization and open new perspectives for the regulation of intermediate filaments by zinc.

          Abstract

          Vimentin is an intermediate filament protein that is targeted by oxidative modification at its single cysteine residue, C328. Here Pérez-Sala et al. reveal a role for this cysteine in vimentin organization and function, and uncover a protective role for zinc binding in filament stability.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Post-translational modifications of intermediate filament proteins: mechanisms and functions.

          Intermediate filaments (IFs) are cytoskeletal and nucleoskeletal structures that provide mechanical and stress-coping resilience to cells, contribute to subcellular and tissue-specific biological functions, and facilitate intracellular communication. IFs, including nuclear lamins and those in the cytoplasm (keratins, vimentin, desmin, neurofilaments and glial fibrillary acidic protein, among others), are functionally regulated by post-translational modifications (PTMs). Proteomic advances highlight the enormous complexity and regulatory potential of IF protein PTMs, which include phosphorylation, glycosylation, sumoylation, acetylation and prenylation, with novel modifications becoming increasingly appreciated. Future studies will need to characterize their on-off mechanisms, crosstalk and utility as biomarkers and targets for diseases involving the IF cytoskeleton.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel member of a zinc transporter family is defective in acrodermatitis enteropathica.

            The rare inherited condition acrodermatitis enteropathica (AE) results from a defect in the absorption of dietary zinc. Recently, we used homozygosity mapping in consanguineous Middle Eastern kindreds to localize the AE gene to an approximately 3.5-cM region on 8q24. In this article, we identify a gene, SLC39A4, located in the candidate region and, in patients with AE, document mutations that likely lead to the disease. The gene encodes a histidine-rich protein, which we refer to as "hZIP4," which is a member of a large family of transmembrane proteins, some of which are known to serve as zinc-uptake proteins. We show that Slc39A4 is abundantly expressed in mouse enterocytes and that the protein resides in the apical membrane of these cells. These findings suggest that the hZIP4 transporter is responsible for intestinal absorption of zinc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Zinc homeostasis in humans.

              Maintaining a constant state of cellular zinc nutrition, or homeostasis, is essential for normal function. In animals and humans, adjustments in zinc absorption and endogenous intestinal excretion are the primary means of maintaining zinc homeostasis. The adjustments in gastrointestinal zinc absorption and endogenous excretion are synergistic. Shifts in endogenous excretion appear to occur quickly with changes in intake just above or below optimal intake. The absorption of zinc responds more slowly, but it has the capacity to cope with large fluctuations in intake. With extremely low zinc intakes or with prolonged marginal intakes, secondary homeostatic adjustments may augment the gastrointestinal changes. These secondary adjustments include changes in urinary zinc excretion, a shift in plasma zinc turnover rates and, possibly, an avid retention of zinc released from selected tissues, such as bone, in other tissues to maintain function.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                02 June 2015
                2015
                : 6
                : 7287
                Affiliations
                [1 ]Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (C.S.I.C.) , Ramiro de Maeztu, 9, 28040 Madrid, Spain
                Author notes
                Article
                ncomms8287
                10.1038/ncomms8287
                4458873
                26031447
                3dc52df8-01a0-4006-a1f8-ed82fd47de4d
                Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 07 October 2014
                : 24 April 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article