117
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Using Data on Social Contacts to Estimate Age-specific Transmission Parameters for Respiratory-spread Infectious Agents

      , ,
      American Journal of Epidemiology
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The estimation of transmission parameters has been problematic for diseases that rely predominantly on transmission of pathogens from person to person through small infectious droplets. Age-specific transmission parameters determine how such respiratory agents will spread among different age groups in a human population. Estimating the values of these parameters is essential in planning an effective response to potentially devastating pandemics of smallpox or influenza and in designing control strategies for diseases such as measles or mumps. In this study, the authors estimated age-specific transmission parameters by augmenting infectious disease data with auxiliary data on self-reported numbers of conversational partners per person. They show that models that use transmission parameters based on these self-reported social contacts are better able to capture the observed patterns of infection of endemically circulating mumps, as well as observed patterns of spread of pandemic influenza. The estimated age-specific transmission parameters suggested that school-aged children and young adults will experience the highest incidence of infection and will contribute most to further spread of infections during the initial phase of an emerging respiratory-spread epidemic in a completely susceptible population. These findings have important implications for controlling future outbreaks of novel respiratory-spread infectious agents.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Modelling disease outbreaks in realistic urban social networks.

          Most mathematical models for the spread of disease use differential equations based on uniform mixing assumptions or ad hoc models for the contact process. Here we explore the use of dynamic bipartite graphs to model the physical contact patterns that result from movements of individuals between specific locations. The graphs are generated by large-scale individual-based urban traffic simulations built on actual census, land-use and population-mobility data. We find that the contact network among people is a strongly connected small-world-like graph with a well-defined scale for the degree distribution. However, the locations graph is scale-free, which allows highly efficient outbreak detection by placing sensors in the hubs of the locations network. Within this large-scale simulation framework, we then analyse the relative merits of several proposed mitigation strategies for smallpox spread. Our results suggest that outbreaks can be contained by a strategy of targeted vaccination combined with early detection without resorting to mass vaccination of a population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Containing pandemic influenza with antiviral agents.

            I Longini (2004)
            For the first wave of pandemic influenza or a bioterrorist influenza attack, antiviral agents would be one of the few options to contain the epidemic in the United States until adequate supplies of vaccine were available. The authors use stochastic epidemic simulations to investigate the effectiveness of targeted antiviral prophylaxis to contain influenza. In this strategy, close contacts of suspected index influenza cases take antiviral agents prophylactically. The authors compare targeted antiviral prophylaxis with vaccination strategies. They model an influenza pandemic or bioterrorist attack for an agent similar to influenza A virus (H2N2) that caused the Asian influenza pandemic of 1957-1958. In the absence of intervention, the model predicts an influenza illness attack rate of 33% of the population (95% confidence interval (CI): 30, 37) and an influenza death rate of 0.58 deaths/1,000 persons (95% Cl: 0.4, 0.8). With the use of targeted antiviral prophylaxis, if 80% of the exposed persons maintained prophylaxis for up to 8 weeks, the epidemic would be contained, and the model predicts a reduction to an illness attack rate of 2% (95% Cl: 0.2, 16) and a death rate of 0.04 deaths/1,000 persons (95% CI: 0.0003, 0.25). Such antiviral prophylaxis is nearly as effective as vaccinating 80% of the population. Vaccinating 80% of the children aged less than 19 years is almost as effective as vaccinating 80% of the population. Targeted antiviral prophylaxis has potential as an effective measure for containing influenza until adequate quantities of vaccine are available.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections.

              Although mixing patterns are thought to be important determinants of the spread of airborne infectious diseases, to our knowledge, there have been no attempts to directly quantify them for humans. We report on a preliminary study to identify such mixing patterns. A sample of 92 adults were asked to detail the individuals with whom they had conversed over the period of one, randomly assigned, day. Sixty-five (71%) completed the questionnaire, providing their age, the age of their contacts and the social context in which the contacts took place. The data were analysed using multilevel modelling. The study identified, and allowed the quantification of, contact patterns within this sample that may be of epidemiological significance. For example, the degree of assortativeness of mixing with respect to age was dependent not only on the age of participants but the number of contacts made. Estimates of the relative magnitude of contact rates between different social settings were made, with implications for outbreak potential. Simple questionnaire modifications are suggested which would yield information on the structure and dynamics of social networks and the intensity of contacts. Surveys of this nature may enable the quantification of who acquires infection from whom and from where.
                Bookmark

                Author and article information

                Journal
                American Journal of Epidemiology
                Oxford University Press (OUP)
                1476-6256
                0002-9262
                November 15 2006
                November 15 2006
                September 12 2006
                November 15 2006
                November 15 2006
                September 12 2006
                : 164
                : 10
                : 936-944
                Article
                10.1093/aje/kwj317
                16968863
                3dd7d470-bdd2-40b3-b4cf-608e87b74a56
                © 2006
                History

                Comments

                Comment on this article