Blog
About

31
views
0
recommends
+1 Recommend
0 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      2013 ETA Guideline: Management of Subclinical Hypothyroidism

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Subclinical hypothyroidism (SCH) should be considered in two categories according to the elevation in serum thyroid-stimulating hormone (TSH) level: mildly increased TSH levels (4.0-10.0 mU/l) and more severely increased TSH value (>10 mU/l). An initially raised serum TSH, with FT 4 within reference range, should be investigated with a repeat measurement of both serum TSH and FT 4, along with thyroid peroxidase antibodies, preferably after a 2- to 3-month interval. Even in the absence of symptoms, replacement therapy with L-thyroxine is recommended for younger patients (<65-70 years) with serum TSH >10 mU/l. In younger SCH patients (serum TSH <10 mU/l) with symptoms suggestive of hypothyroidism, a trial of L-thyroxine replacement therapy should be considered. For such patients who have been started on L-thyroxine for symptoms attributed to SCH, response to treatment should be reviewed 3 or 4 months after a serum TSH within reference range is reached. If there is no improvement in symptoms, L-thyroxine therapy should generally be stopped. Age-specific local reference ranges for serum TSH should be considered in order to establish a diagnosis of SCH in older people. The oldest old subjects (>80-85 years) with elevated serum TSH ≤10 mU/l should be carefully followed with a wait-and-see strategy, generally avoiding hormonal treatment. If the decision is to treat SCH, then oral L-thyroxine, administered daily, is the treatment of choice. The serum TSH should be re-checked 2 months after starting L-thyroxine therapy, and dosage adjustments made accordingly. The aim for most adults should be to reach a stable serum TSH in the lower half of the reference range (0.4-2.5 mU/l). Once patients with SCH are commenced on L-thyroxine treatment, then serum TSH should be monitored at least annually thereafter.

          Related collections

          Most cited references 137

          • Record: found
          • Abstract: not found
          • Article: not found

          GRADE: an emerging consensus on rating quality of evidence and strength of recommendations.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III).

            NHANES III measured serum TSH, total serum T(4), antithyroperoxidase (TPOAb), and antithyroglobulin (TgAb) antibodies from a sample of 17,353 people aged > or =12 yr representing the geographic and ethnic distribution of the U.S. population. These data provide a reference for other studies of these analytes in the U.S. For the 16,533 people who did not report thyroid disease, goiter, or taking thyroid medications (disease-free population), we determined mean concentrations of TSH, T(4), TgAb, and TPOAb. A reference population of 13,344 people was selected from the disease-free population by excluding, in addition, those who were pregnant, taking androgens or estrogens, who had thyroid antibodies, or biochemical hypothyroidism or hyperthyroidism. The influence of demographics on TSH, T(4), and antibodies was examined. Hypothyroidism was found in 4.6% of the U.S. population (0.3% clinical and 4.3% subclinical) and hyperthyroidism in 1.3% (0.5% clinical and 0.7% subclinical). (Subclinical hypothyroidism is used in this paper to mean mild hypothyroidism, the term now preferred by the American Thyroid Association for the laboratory findings described.) For the disease-free population, mean serum TSH was 1.50 (95% confidence interval, 1.46-1.54) mIU/liter, was higher in females than males, and higher in white non-Hispanics (whites) [1.57 (1.52-1.62) mIU/liter] than black non-Hispanics (blacks) [1.18 (1.14-1.21) mIU/liter] (P < 0.001) or Mexican Americans [1.43 (1.40-1.46) mIU/liter] (P < 0.001). TgAb were positive in 10.4 +/- 0.5% and TPOAb, in 11.3 +/- 0.4%; positive antibodies were more prevalent in women than men, increased with age, and TPOAb were less prevalent in blacks (4.5 +/- 0.3%) than in whites (12.3 +/- 0.5%) (P < 0.001). TPOAb were significantly associated with hypo or hyperthyroidism, but TgAb were not. Using the reference population, geometric mean TSH was 1.40 +/- 0.02 mIU/liter and increased with age, and was significantly lower in blacks (1.18 +/- 0.02 mIU/liter) than whites (1.45 +/- 0.02 mIU/liter) (P < 0.001) and Mexican Americans (1.37 +/- 0.02 mIU/liter) (P < 0.001). Arithmetic mean total T(4) was 112.3 +/- 0.7 nmol/liter in the disease-free population and was consistently higher among Mexican Americans in all populations. In the reference population, mean total T(4) in Mexican Americans was (116.3 +/- 0.7 nmol/liter), significantly higher than whites (110.0 +/- 0.8 nmol/liter) or blacks (109.4 +/- 0.8 nmol/liter) (P < 0.0001). The difference persisted in all age groups. In summary, TSH and the prevalence of antithyroid antibodies are greater in females, increase with age, and are greater in whites and Mexican Americans than in blacks. TgAb alone in the absence of TPOAb is not significantly associated with thyroid disease. The lower prevalence of thyroid antibodies and lower TSH concentrations in blacks need more research to relate these findings to clinical status. A large proportion of the U.S. population unknowingly have laboratory evidence of thyroid disease, which supports the usefulness of screening for early detection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Subclinical thyroid disease: scientific review and guidelines for diagnosis and management.

              Patients with serum thyroid-stimulating hormone (TSH) levels outside the reference range and levels of free thyroxine (FT4) and triiodothyronine (T3) within the reference range are common in clinical practice. The necessity for further evaluation, possible treatment, and the urgency of treatment have not been clearly established. To define subclinical thyroid disease, review its epidemiology, recommend an appropriate evaluation, explore the risks and benefits of treatment and consequences of nontreatment, and determine whether population-based screening is warranted. MEDLINE, EMBASE, Biosis, the Agency for Healthcare Research and Quality, National Guideline Clearing House, the Cochrane Database of Systematic Reviews and Controlled Trials Register, and several National Health Services (UK) databases were searched for articles on subclinical thyroid disease published between 1995 and 2002. Articles published before 1995 were recommended by expert consultants. A total of 195 English-language or translated papers were reviewed. Editorials, individual case studies, studies enrolling fewer than 10 patients, and nonsystematic reviews were excluded. Information related to authorship, year of publication, number of subjects, study design, and results were extracted and formed the basis for an evidence report, consisting of tables and summaries of each subject area. The strength of the evidence that untreated subclinical thyroid disease is associated with clinical symptoms and adverse clinical outcomes was assessed and recommendations for clinical practice developed. Data relating the progression of subclinical to overt hypothyroidism were rated as good, but data relating treatment to prevention of progression were inadequate to determine a treatment benefit. Data relating a serum TSH level higher than 10 mIU/L to elevations in serum cholesterol were rated as fair but data relating to benefits of treatment were rated as insufficient. All other associations of symptoms and benefit of treatment were rated as insufficient or absent. Data relating a serum TSH concentration lower than 0.1 mIU/L to the presence of atrial fibrillation and progression to overt hyperthyroidism were rated as good, but no data supported treatment to prevent these outcomes. Data relating restoration of the TSH level to within the reference range with improvements in bone mineral density were rated as fair. Data addressing all other associations of subclinical hyperthyroid disease and adverse clinical outcomes or treatment benefits were rated as insufficient or absent. Subclinical hypothyroid disease in pregnancy is a special case and aggressive case finding and treatment in pregnant women can be justified. Data supporting associations of subclinical thyroid disease with symptoms or adverse clinical outcomes or benefits of treatment are few. The consequences of subclinical thyroid disease (serum TSH 0.1-0.45 mIU/L or 4.5-10.0 mIU/L) are minimal and we recommend against routine treatment of patients with TSH levels in these ranges. There is insufficient evidence to support population-based screening. Aggressive case finding is appropriate in pregnant women, women older than 60 years, and others at high risk for thyroid dysfunction.
                Bookmark

                Author and article information

                Affiliations
                aInstitute of Genetic Medicine, Newcastle University, UK
                bRoyal Victoria Infirmary, Newcastle upon Tyne, UK
                cMedizinische Klinik I, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
                dEndocrine Unit, Evgenidion Hospital, University of Athens, Athens, Greece
                eDepartment of Clinical and Experimental Medicine, Università di Pisa, Pisa, Italy
                fRotterdam Thyroid Center, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
                gQueen Elizabeth Hospital, Gateshead, UK
                hClinique Endocrinologique Marc Linquette, CHU, Lille, France
                Author notes
                *Prof. Simon Pearce, Newcastle University Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ (UK), E-Mail
                Journal
                Eur Thyroid J
                Eur Thyroid J
                ETJ
                European Thyroid Journal
                S. Karger AG (Allschwilerstrasse 10, P.O. Box · Postfach · Case postale, CH–4009, Basel, Switzerland · Schweiz · Suisse, Phone: +41 61 306 11 11, Fax: +41 61 306 12 34, karger@karger.ch )
                2235-0640
                2235-0802
                December 2013
                27 November 2013
                1 June 2014
                : 2
                : 4
                : 215-228
                24783053 3923601 10.1159/000356507 etj-0002-0215
                Copyright © 2013 by S. Karger AG, Basel
                Counts
                Figures: 1, References: 142, Pages: 14
                Categories
                Guidelines

                Comments

                Comment on this article