13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NGS Analysis for Molecular Diagnosis of Retinitis Pigmentosa (RP): Detection of a Novel Variant in PRPH2 Gene

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This work describes the application of NGS for molecular diagnosis of RP in a family with a history of severe hypovision. In particular, the proband received a clinical diagnosis of RP on the basis of medical, instrumental examinations and his family history. The proband was subjected to NGS, utilizing a customized panel including 24 genes associated with RP and other retinal dystrophies. The NGS analysis revealed a novel missense variant (c.668T > A, I223N) in PRPH2 gene, which was investigated by segregation and bioinformatic analysis. The variant is located in the D2 loop domain of PRPH2, which is critical for protein activity. Bioinformatic analysis described the c.668T > A as a likely pathogenic variant. Moreover, a 3D model prediction was performed to better characterize the impact of the variant on the protein, reporting a disruption of the α-helical structures. As a result, the variant protein showed a substantially different conformation with respect to the wild-type PRPH2. The identified variant may therefore affect the oligomerization ability of the D2 loop and, ultimately, hamper PRPH2 proper functioning and localization. In conclusion, PRPH2_c.668T > A provided a molecular explanation of RP symptomatology, highlighting the clinical utility of NGS panels to facilitate genotype–phenotype correlations.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Non-syndromic retinitis pigmentosa

          Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. RP is a leading cause of visual disability, with a worldwide prevalence of 1:4000. Although the majority of RP cases are non-syndromic, 20-30% of patients with RP also have an associated non-ocular condition. RP typically manifests with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors; central vision loss occurs later in life due to cone dysfunction. Photoreceptor function measured with an electroretinogram is markedly reduced or even absent. Optical coherence tomography (OCT) and fundus autofluorescence (FAF) imaging show a progressive loss of outer retinal layers and altered lipofuscin distribution in a characteristic pattern. Over the past three decades, a vast number of disease-causing variants in more than 80 genes have been associated with non-syndromic RP. The wide heterogeneity of RP makes it challenging to describe the clinical findings and pathogenesis. In this review, we provide a comprehensive overview of the clinical characteristics of RP specific to genetically defined patient subsets. We supply a unique atlas with color fundus photographs of most RP subtypes, and we discuss the relevant considerations with respect to differential diagnoses. In addition, we discuss the genes involved in the pathogenesis of RP, as well as the retinal processes that are affected by pathogenic mutations in these genes. Finally, we review management strategies for patients with RP, including counseling, visual rehabilitation, and current and emerging therapeutic options.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Can Predicted Protein 3D Structures Provide Reliable Insights into whether Missense Variants Are Disease Associated?

            Knowledge of protein structure can be used to predict the phenotypic consequence of a missense variant. Since structural coverage of the human proteome can be roughly tripled to over 50% of the residues if homology-predicted structures are included in addition to experimentally determined coordinates, it is important to assess the reliability of using predicted models when analyzing missense variants. Accordingly, we assess whether a missense variant is structurally damaging by using experimental and predicted structures. We considered 606 experimental structures and show that 40% of the 1965 disease-associated missense variants analyzed have a structurally damaging change in the mutant structure. Only 11% of the 2134 neutral variants are structurally damaging. Importantly, similar results are obtained when 1052 structures predicted using Phyre2 algorithm were used, even when the model shares low (< 40%) sequence identity to the template. Thus, structure-based analysis of the effects of missense variants can be effectively applied to homology models. Our in-house pipeline, Missense3D, for structurally assessing missense variants was made available at http://www.sbg.bio.ic.ac.uk/~missense3d
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene.

              Peripherin/rds is an integral membrane glycoprotein, mainly located in the rod and cone outer segments. The relevance of this protein to photoreceptor outer segment morphology was first demonstrated in retinal degeneration slow (rds) mice. Thus far, over 90 human peripherin/RDS gene mutations have been identified. These mutations have been associated with a variety of retinal dystrophies, in which there is a remarkable inter- and intrafamilial variation of the retinal phenotype. In this paper, we discuss the characteristics of the peripherin/RDS gene and its protein product. An overview is presented of the broad spectrum of clinical phenotypes caused by human peripherin/RDS gene mutations, ranging from various macular dystrophies to widespread forms of retinal dystrophy such as retinitis pigmentosa. Finally, we review the proposed genotype-phenotype correlation and the pathophysiologic mechanisms underlying this group of retinal dystrophies.
                Bookmark

                Author and article information

                Journal
                Genes (Basel)
                Genes (Basel)
                genes
                Genes
                MDPI
                2073-4425
                12 October 2019
                October 2019
                : 10
                : 10
                : 792
                Affiliations
                [1 ]Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, 00179 Rome, Italy; claudia.strafella@ 123456gmail.com (C.S.);
                [2 ]Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
                [3 ]Organi di Senso Department, University “la Sapienza”, 00161 Rome, Italy
                [4 ]Department of Veterinary Medicine, University of Milan, 20122 Milan, Italy
                [5 ]Neuromed IRCSS, 86077 Pozzilli, Italy
                [6 ]Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
                Author notes
                [†]

                These authors equally contributed to the work.

                Author information
                https://orcid.org/0000-0003-1334-0920
                https://orcid.org/0000-0002-0020-8798
                Article
                genes-10-00792
                10.3390/genes10100792
                6826621
                31614793
                3dedf7de-edbc-4ea6-b127-52e6da3b4d92
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 September 2019
                : 11 October 2019
                Categories
                Article

                retinitis pigmentosa,ngs panel,prph2,d2 loop domain,genotype-phenotype correlation

                Comments

                Comment on this article