14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Isotetrandrine Reduces Astrocyte Cytotoxicity in Neuromyelitis Optica by Blocking the Binding of NMO-IgG to Aquaporin 4

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: Neuromyelitis optica (NMO) is a severe neurological demyelinating autoimmune disease that affects the optic nerves and spinal cord with no cure and no FDA-approved therapy. Research over the last decade revealed that the binding of NMO-IgG to the water channel protein astrocyte aquaporin 4 (AQP4) might be the primary cause of NMO pathogenesis. The purpose of this study was to identify potential blockers of NMO-IgG and AQP4 binding. Methods: We developed a two-step screening platform consisting of a reporter cell-based high-throughput screen assay and a cell viability-based assay. Purified NMO-IgG from NMO patient serum and transfected Chinese hamster lung fibroblast V79 cells stably expressing human M23-AQP4 were used for primary screening of 40,000 small molecule fractions from 500 traditional Chinese herbs. Results: Thirty-six positive fractions were identified, of which 3 active fractions (at 50 μg/ml) were found to be from the same Chinese traditional herb Mahonia japonica (Thunb.). A bioactivity-guided method based on a primary screening assay for blocking activity led to the isolation of an active single natural compound, isotetrandrine, from the 3 fractions. Our immunofluorescence staining results showed that isotetrandrine can block NMO-IgG binding to AQP4 without affecting the expression and function of AQP4. It can also inhibit NMO-IgG binding to astrocyte AQP4 in NMO patient sera and block NMO-IgG-dependent complement-mediated cytotoxicity with the IC<sub>50</sub> at ∼3 μ<smlcap>M</smlcap>. Conclusions: The present study developed a cell-based high-throughput screen to identify small molecule inhibitors for NMO-IgG and AQP4 binding, and suggests a potential therapeutic value of isotetrandrine in NMO.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays

          J-H Zhang (1999)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica.

            Autoantibody specific for the aquaporin-4 astrocytic water channel is restricted to serum and CSF of patients with neuromyelitis optica (NMO) and related CNS inflammatory demyelinating disorders (relapsing optic neuritis and longitudinally extensive transverse myelitis). NMO-typical lesions are distinct from MS-typical lesions. Aquaporin-4 is lost selectively at vasculocentric sites of edema/inflammation coinciding with focal deposits of immunoglobulins (Ig) G, M, and terminal complement products, with and without myelin loss. Evidence for antigen-specific autoantibody pathogenicity is lacking. We used confocal microscopy and flow cytometry to evaluate the selectivity and immunopathological consequences of Ig binding to surface epitopes of living target cells expressing aquaporin-4 fused at its cytoplasmic N-terminus with GFP. We tested serum, IgG-enriched and IgG-depleted serum fractions, and CSF from patients with NMO, neurologic control patients, and healthy subjects. We also analyzed aquaporin-4 immunoreactivity in myelinated adult mouse optic nerves and spinal cord, and plasma cell Ig isotypes in archived brain tissue from an NMO patient. Serum IgG from patients with NMO binds to the extracellular domain of aquaporin-4; it is predominantly IgG(1), and it initiates two potentially competing outcomes, aquaporin-4 endocytosis/degradation and complement activation. Serum and CSF lack aquaporin-4-specific IgM, and plasma cells in CNS lesions of NMO contain only IgG. Paranodal astrocytic endfeet highly express aquaporin-4. NMO patients' serum IgG has a selective pathologic effect on cell membranes expressing aquaporin-4. IgG targeting astrocytic processes around nodes of Ranvier could initiate demyelination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica.

              Neuromyelitis optica (NMO) is a rare CNS inflammatory disorder that predominantly affects the optic nerves and spinal cord. Recent serological findings strongly suggest that NMO is a distinct disease rather than a subtype of multiple sclerosis. In NMO, serum antibodies, collectively known as NMO-IgG, characteristically bind to cerebral microvessels, pia mater and Virchow-Robin spaces. The main target antigen for this immunoreactivity has been identified as aquaporin-4 (AQP4). The antibodies are highly specific for NMO, and they are also found in patients with longitudinally extensive transverse myelitis without optic neuritis, which is thought to be a precursor to NMO in some cases. An antibody-mediated pathogenesis for NMO is supported by several observations, including the characteristics of the AQP4 antibodies, the distinct NMO pathology--which includes IgG and complement deposition and loss of AQP4 from spinal cord lesions--and emerging evidence of the beneficial effects of B-cell depletion and plasma exchange. Many aspects of the pathogenesis, however, remain unclear.
                Bookmark

                Author and article information

                Journal
                NIM
                Neuroimmunomodulation
                10.1159/issn.1021-7401
                Neuroimmunomodulation
                S. Karger AG
                1021-7401
                1423-0216
                2016
                June 2016
                12 April 2016
                : 23
                : 2
                : 98-108
                Affiliations
                aDepartment of Laboratory Medicine, Jilin Medical University, and Departments of bNeurology and cNeurosurgery, The China-Japan Union Hospital, Jilin University, Changchun, and dDepartment of Internal Medicine, Xiamen University Affiliated Hospital, Xiamen, PR China; eDepartment of Statistics, North Dakota State University, Fargo, N.Dak., USA
                Author notes
                *Miao Li, Department of Neurosurgery, The China-Japan Union Hospital, Jilin University, Changchun 130033 (PR China), E-Mail limiao@jlu.edu.cn
                Article
                444530 Neuroimmunomodulation 2016;23:98-108
                10.1159/000444530
                27064690
                3df14edc-b970-4240-867e-635a08421a0a
                © 2016 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 09 November 2015
                : 05 February 2016
                Page count
                Figures: 5, References: 40, Pages: 11
                Categories
                Original Paper

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                NMO-IgG binding,High-throughput screening,Isotetrandrine,Neuromyelitis optica,Traditional Chinese herbs,Aquaporin 4

                Comments

                Comment on this article