92
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Premature and accelerated aging: HIV or HAART?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Highly active antiretroviral therapy (HAART) has significantly increased life expectancy of the human immunodeficiency virus (HIV)-positive population. Nevertheless, the average lifespan of HIV-patients remains shorter compared to uninfected individuals. Immunosenescence, a current explanation for this difference invokes heavily on viral stimulus despite HAART efficiency in viral suppression. We propose here that the premature and accelerated aging of HIV-patients can also be caused by adverse effects of antiretroviral drugs, specifically those that affect the mitochondria. The nucleoside reverse transcriptase inhibitor (NRTI) antiretroviral drug class for instance, is known to cause depletion of mitochondrial DNA via inhibition of the mitochondrial specific DNA polymerase-γ. Besides NRTIs, other antiretroviral drug classes such as protease inhibitors also cause severe mitochondrial damage by increasing oxidative stress and diminishing mitochondrial function. We also discuss important areas for future research and argue in favor of the use of Caenorhabditis elegans as a novel model system for studying these effects.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          The sites and topology of mitochondrial superoxide production.

          Mitochondrial superoxide production is an important source of reactive oxygen species in cells, and may cause or contribute to ageing and the diseases of ageing. Seven major sites of superoxide production in mammalian mitochondria are known and widely accepted. In descending order of maximum capacity they are the ubiquinone-binding sites in complex I (site IQ) and complex III (site IIIQo), glycerol 3-phosphate dehydrogenase, the flavin in complex I (site IF), the electron transferring flavoprotein:Q oxidoreductase (ETFQOR) of fatty acid beta-oxidation, and pyruvate and 2-oxoglutarate dehydrogenases. None of these sites is fully characterized and for some we only have sketchy information. The topology of the sites is important because it determines whether or not a site will produce superoxide in the mitochondrial matrix and be able to damage mitochondrial DNA. All sites produce superoxide in the matrix; site IIIQo and glycerol 3-phosphate dehydrogenase also produce superoxide to the intermembrane space. The relative contribution of each site to mitochondrial reactive oxygen species generation in the absence of electron transport inhibitors is unknown in isolated mitochondria, in cells or in vivo, and may vary considerably with species, tissue, substrate, energy demand and oxygen tension. Copyright (c) 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Telomere length, stem cells and aging.

            Telomere shortening occurs concomitant with organismal aging, and it is accelerated in the context of human diseases associated with mutations in telomerase, such as some cases of dyskeratosis congenita, idiopathic pulmonary fibrosis and aplastic anemia. People with these diseases, as well as Terc-deficient mice, show decreased lifespan coincidental with a premature loss of tissue renewal, which suggests that telomerase is rate-limiting for tissue homeostasis and organismal survival. These findings have gained special relevance as they suggest that telomerase activity and telomere length can directly affect the ability of stem cells to regenerate tissues. If this is true, stem cell dysfunction provoked by telomere shortening may be one of the mechanisms responsible for organismal aging in both humans and mice. Here, we will review the current evidence linking telomere shortening to aging and stem cell dysfunction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial energetics and therapeutics.

              Mitochondrial dysfunction has been linked to a wide range of degenerative and metabolic diseases, cancer, and aging. All these clinical manifestations arise from the central role of bioenergetics in cell biology. Although genetic therapies are maturing as the rules of bioenergetic genetics are clarified, metabolic therapies have been ineffectual. This failure results from our limited appreciation of the role of bioenergetics as the interface between the environment and the cell. A systems approach, which, ironically, was first successfully applied over 80 years ago with the introduction of the ketogenic diet, is required. Analysis of the many ways that a shift from carbohydrate glycolytic metabolism to fatty acid and ketone oxidative metabolism may modulate metabolism, signal transduction pathways, and the epigenome gives us an appreciation of the ketogenic diet and the potential for bioenergetic therapeutics.
                Bookmark

                Author and article information

                Journal
                Front Genet
                Front Genet
                Front. Gene.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                28 January 2013
                2012
                : 3
                : 328
                Affiliations
                Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
                Author notes

                Edited by: Alexey Moskalev, Institute of Biology of Komi Science Center of Ural Division of Russian Academy of Science, Russia

                Reviewed by: Danhui Liu, Wenzhou Medical College, China; Shin Murakami, Touro University-California, USA

                *Correspondence: Yelena Budovskaya and Hans van der Spek, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, Netherlands. e-mail: y.budovskaya@ 123456uva.nl ; j.c.vanderspek@ 123456uva.nl

                This article was submitted to Frontiers in Genetics of Aging, a specialty of Frontiers in Genetics.

                Article
                10.3389/fgene.2012.00328
                3556597
                23372574
                3df2a900-0d66-43c2-b959-28b490ad5014
                Copyright © Smith, de Boer, Brul, Budovskaya and van der Spek.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 16 October 2012
                : 29 December 2012
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 115, Pages: 10, Words: 0
                Categories
                Genetics
                Review Article

                Genetics
                antiretroviral,c. elegans,haart,hiv,immunosenescence,mitochondria,nrti,premature and accelerated aging

                Comments

                Comment on this article