28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The impact of stress on body function: A review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Any intrinsic or extrinsic stimulus that evokes a biological response is known as stress. The compensatory responses to these stresses are known as stress responses. Based on the type, timing and severity of the applied stimulus, stress can exert various actions on the body ranging from alterations in homeostasis to life-threatening effects and death. In many cases, the pathophysiological complications of disease arise from stress and the subjects exposed to stress, e.g. those that work or live in stressful environments, have a higher likelihood of many disorders. Stress can be either a triggering or aggravating factor for many diseases and pathological conditions. In this study, we have reviewed some of the major effects of stress on the primary physiological systems of humans.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: not found
          • Article: not found

          Loss of recent memory after bilateral hippocampal lesions.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path.

            1. The after-effects of repetitive stimulation of the perforant path fibres to the dentate area of the hippocampal formation have been examined with extracellular micro-electrodes in rabbits anaesthetized with urethane.2. In fifteen out of eighteen rabbits the population response recorded from granule cells in the dentate area to single perforant path volleys was potentiated for periods ranging from 30 min to 10 hr after one or more conditioning trains at 10-20/sec for 10-15 sec, or 100/sec for 3-4 sec.3. The population response was analysed in terms of three parameters: the amplitude of the population excitatory post-synaptic potential (e.p.s.p.), signalling the depolarization of the granule cells, and the amplitude and latency of the population spike, signalling the discharge of the granule cells.4. All three parameters were potentiated in 29% of the experiments; in other experiments in which long term changes occurred, potentiation was confined to one or two of the three parameters. A reduction in the latency of the population spike was the commonest sign of potentiation, occurring in 57% of all experiments. The amplitude of the population e.p.s.p. was increased in 43%, and of the population spike in 40%, of all experiments.5. During conditioning at 10-20/sec there was massive potentiation of the population spike (;frequency potentiation'). The spike was suppressed during stimulation at 100/sec. Both frequencies produced long-term potentiation.6. The results suggest that two independent mechanisms are responsible for long-lasting potentiation: (a) an increase in the efficiency of synaptic transmission at the perforant path synapses; (b) an increase in the excitability of the granule cell population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of Psychological Factors on the Pathogenesis of Cardiovascular Disease and Implications for Therapy

              Recent studies provide clear and convincing evidence that psychosocial factors contribute significantly to the pathogenesis and expression of coronary artery disease (CAD). This evidence is composed largely of data relating CAD risk to 5 specific psychosocial domains: (1) depression, (2) anxiety, (3) personality factors and character traits, (4) social isolation, and (5) chronic life stress. Pathophysiological mechanisms underlying the relationship between these entities and CAD can be divided into behavioral mechanisms, whereby psychosocial conditions contribute to a higher frequency of adverse health behaviors, such as poor diet and smoking, and direct pathophysiological mechanisms, such as neuroendocrine and platelet activation. An extensive body of evidence from animal models (especially the cynomolgus monkey, Macaca fascicularis) reveals that chronic psychosocial stress can lead, probably via a mechanism involving excessive sympathetic nervous system activation, to exacerbation of coronary artery atherosclerosis as well as to transient endothelial dysfunction and even necrosis. Evidence from monkeys also indicates that psychosocial stress reliably induces ovarian dysfunction, hypercortisolemia, and excessive adrenergic activation in premenopausal females, leading to accelerated atherosclerosis. Also reviewed are data relating CAD to acute stress and individual differences in sympathetic nervous system responsivity. New technologies and research from animal models demonstrate that acute stress triggers myocardial ischemia, promotes arrhythmogenesis, stimulates platelet function, and increases blood viscosity through hemoconcentration. In the presence of underlying atherosclerosis (eg, in CAD patients), acute stress also causes coronary vasoconstriction. Recent data indicate that the foregoing effects result, at least in part, from the endothelial dysfunction and injury induced by acute stress. Hyperresponsivity of the sympathetic nervous system, manifested by exaggerated heart rate and blood pressure responses to psychological stimuli, is an intrinsic characteristic among some individuals. Current data link sympathetic nervous system hyperresponsivity to accelerated development of carotid atherosclerosis in human subjects and to exacerbated coronary and carotid atherosclerosis in monkeys. Thus far, intervention trials designed to reduce psychosocial stress have been limited in size and number. Specific suggestions to improve the assessment of behavioral interventions include more complete delineation of the physiological mechanisms by which such interventions might work; increased use of new, more convenient "alternative" end points for behavioral intervention trials; development of specifically targeted behavioral interventions (based on profiling of patient factors); and evaluation of previously developed models of predicting behavioral change. The importance of maximizing the efficacy of behavioral interventions is underscored by the recognition that psychosocial stresses tend to cluster together. When they do so, the resultant risk for cardiac events is often substantially elevated, equaling that associated with previously established risk factors for CAD, such as hypertension and hypercholesterolemia.
                Bookmark

                Author and article information

                Journal
                EXCLI J
                EXCLI J
                EXCLI J
                EXCLI Journal
                Leibniz Research Centre for Working Environment and Human Factors
                1611-2156
                21 July 2017
                2017
                : 16
                : 1057-1072
                Affiliations
                [1 ]Neurosciences Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
                [2 ]Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
                [3 ]Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
                [4 ]Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
                Author notes
                *To whom correspondence should be addressed: Yunes Panahi, Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran; Tel/Fax: +982188211524, E-mail: yunespanahi@ 123456yahoo.com
                Article
                2017-480 Doc1057
                10.17179/excli2017-480
                5579396
                28900385
                3df91dd3-c2cd-4d64-a852-9dcffa19506c
                Copyright © 2017 Yaribeygi et al.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence ( http://creativecommons.org/licenses/by/4.0/) You are free to copy, distribute and transmit the work, provided the original author and source are credited.

                Categories
                Review Article

                stress,physiology,homeostasis
                stress, physiology, homeostasis

                Comments

                Comment on this article