42
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ACE Inhibition in Anti-Thy1 Glomerulonephritis Limits Proteinuria but Does Not Improve Renal Function and Structural Remodeling

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: ACE inhibitor (ACE-I) treatment effectively inhibits proteinuria and ameliorates the course of various renal diseases. In experimental glomerulonephritis, however, angiotensin II (AngII) infusion has also been shown to be renoprotective. We evaluated the long-term (28 days) course of anti-Thy1 glomerulonephritis in animals with suppressed AngII formation by ACE-I treatment. Methods: Brown Norway rats received perindopril (2.8 mg/kg/day, n = 12), dihydropyridine calcium-antagonist amlodipine (Ca-A; 13 mg/kg/day, n = 6) or were left untreated (n = 14). All animals were monitored for blood pressure, proteinuria, and creatinine clearance after anti-Thy1 injection. Renal histology was assessed at day 7 and 28. Results: Systolic blood pressure was equally reduced by ACE-I and Ca-A treatment. AngII suppression prevented development of proteinuria, but did not protect against glomerular microaneurysm formation or reduction in creatinine clearance. After resolution of the microaneurysms, animals with suppressed AngII production showed a modest increase in glomerulosclerosis and vasculopathic thickening of intrarenal vessels. Conclusions: In anti-Thy1 glomerulonephritis, suppression of AngII formation does not protect against the induction of glomerular damage and is associated with mild aggravation of adverse renal fibrotic remodeling. Proteinuria, however, is effectively prevented by ACE-I treatment. Ca-A treatment did not affect the course of glomerulonephritis, indicating that ACE-I effects are blood pressure independent.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Progression, remission, regression of chronic renal diseases.

          The prevalence of chronic renal disease is increasing worldwide. Most chronic nephropathies lack a specific treatment and progress relentlessly to end-stage renal disease. However, research in animals and people has helped our understanding of the mechanisms of this progression and has indicated possible preventive methods. The notion of renoprotection is developing into a combined approach to renal diseases, the main measures being pharmacological control of blood pressure and reduction of proteinuria. Lowering of blood lipids, smoking cessation, and tight glucose control for diabetes also form part of the multimodal protocol for management of renal patients. With available treatments, dialysis can be postponed for many patients with chronic nephropathies, but the real goal has to be less dialysis-in other words remission of disease and regression of structural damage to the kidney. Experimental and clinical data lend support to the notion that less dialysis (and maybe none for some patients) is at least possible.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bone-marrow-derived cells contribute to glomerular endothelial repair in experimental glomerulonephritis.

            Glomerular endothelial injury plays an important role in the pathogenesis of renal diseases and is centrally involved in renal disease progression. Glomerular endothelial repair may help maintain renal function. We examined whether bone-marrow (BM)-derived cells contribute to glomerular repair. A rat allogenic BM transplant model was used to allow tracing of BM-derived cells using a donor major histocompatibility complex class-I specific mAb. In glomeruli of chimeric rats we identified a small number of donor-BM-derived endothelial and mesangial cells, which increased in a time-dependent manner. Induction of anti-Thy-1.1-glomerulonephritis (transient mesangial and secondary glomerular endothelial injury) caused a significant, more than fourfold increase in the number of BM-derived glomerular endothelial cells at day 7 after anti-Thy-1.1 injection compared to chimeric rats without glomerular injury. The level of BM-derived endothelial cells remained high at day 28. We also observed a more than sevenfold increase in the number of BM-derived mesangial cells at day 28. BM-derived endothelial and mesangial cells were fully integrated in the glomerular structure. Our data show that BM-derived cells participate in glomerular endothelial and mesangial cell turnover and contribute to microvascular repair. These findings provide novel insights into the pathogenesis of renal disease and suggest a potential role for stem cell therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Angiotensin II promotes development of the renal microcirculation through AT1 receptors.

              Pharmacologic or genetic deletion of components of the renin-angiotensin system leads to postnatal kidney injury, but the roles of these components in kidney development are unknown. To test the hypothesis that angiotensin II supports angiogenesis during postnatal kidney development, we quantified CD31(+) postglomerular microvessels, performed quantitative PCR analysis of vascular growth factor expression, and measured renal blood flow by magnetic resonance. Treating rats with the angiotensin II type 1 receptor antagonist candesartan for 2 weeks after birth reduced the total length, volume, and surface area of capillaries in both the cortex and the medulla and inhibited the organization of vasa recta bundles. In addition, angiotensin II type 1 antagonism inhibited the transcription of angiogenic growth factors vascular endothelial growth factor, angiopoietin-1, angiopoietin-2, and the angiopoietin receptor Tie-2 in cortex and medulla. Similarly, Agtr1a(-/-);Agtr1b(-/-) mouse kidneys had decreased angiopoietin-1, angiopoietin-2, and Tie-2 mRNAs at postnatal day 14. To test whether increased urinary flow leads to microvascular injury, we induced postnatal polyuria with either lithium or adrenalectomy, but these did not alter vascular endothelial growth factor expression or vasa recta organization. Compared with vehicle-treated rats, renal blood flow was significantly (approximately 20%) lower in candesartan-treated rats even 14 days after candesartan withdrawal. Taken together, these data demonstrate that angiotensin II promotes postnatal expansion of postglomerular capillaries and organization of vasa recta bundles, which are necessary for development of normal renal blood flow.
                Bookmark

                Author and article information

                Journal
                NNE
                NNE
                10.1159/issn.1664-5529
                Nephron Extra
                S. Karger AG
                1664-5529
                2012
                January – December 2012
                26 January 2012
                : 2
                : 1
                : 9-16
                Affiliations
                Departments of aNephrology and Hypertension, and bPathology, University Medical Center Utrecht, Utrecht, The Netherlands
                Author notes
                *Prof. Marianne C. Verhaar, MD, PhD, University Medical Center Utrecht, Department of Nephrology and Hypertension, F03.227, Heidelberglaan 100, NL–3584 CX Utrecht (The Netherlands), Tel. +31 88 755 7380, E-Mail m.c.verhaar@umcutrecht.nl
                Article
                335750 PMC3318936 Nephron Extra 2012;2:9–16
                10.1159/000335750
                PMC3318936
                22479264
                3dfc87ef-4140-4b30-9bbc-6fc29cfabbe0
                © 2012 S. Karger AG, Basel

                Open Access License: This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC) ( http://www.karger.com/OA-license), applicable to the online version of the article only. Distribution permitted for non-commercial purposes only. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 4, Tables: 1, Pages: 8
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                Anti-Thy1 glomerulonephritis,Angiotensin II,ACE inhibitor,Glomerulosclerosis

                Comments

                Comment on this article