28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Silencing DNA methyltransferase 1 (DNMT1) inhibits proliferation, metastasis and invasion in ESCC by suppressing methylation of RASSF1A and DAPK

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Our previous study showed DNMT1 is up-regulated in esophageal squamous cell carcinoma (ESCC), which is associated with methylation of tumor suppressors. In the current study, we investigate the role of DNMT1 in ESCC. We found silencing DNMT1 inhibited proliferation, metastasis and invasion of three different ESCC cells, K150, K410 and K450. We also found silencing DNMT1 induced G1 arrest and cell apoptosis in K150, K410 and K450 cells. In vivo study showed silencing DNMT1 suppressed tumor growth in nude mice. In addition, silencing DNMT1 increased expression of tumor suppressor genes, RASSF1A and DAPK, in ESCC cells and ESCC xenograft in nude mice. Moreover, silencing DNMT1 decreased methylation in promoter of RASSF1A and DAPK. In conclusion, our data demonstrated that silencing DNMT1 inhibits proliferation, metastasis and invasion in ESCC by suppressing methylation of RASSF1A and DAPK.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival.

          The role of DNA methylation and of the maintenance DNA methyltransferase Dnmt1 in the epigenetic regulation of developmental stage- and cell lineage-specific gene expression in vivo is uncertain. This is addressed here through the generation of mice in which Dnmt1 was inactivated by Cre/loxP-mediated deletion at sequential stages of T cell development. Deletion of Dnmt1 in early double-negative thymocytes led to impaired survival of TCRalphabeta(+) cells and the generation of atypical CD8(+)TCRgammadelta(+) cells. Deletion of Dnmt1 in double-positive thymocytes impaired activation-induced proliferation but differentially enhanced cytokine mRNA expression by naive peripheral T cells. We conclude that Dnmt1 and DNA methylation are required for the proper expression of certain genes that define fate and determine function in T cells.
            • Record: found
            • Abstract: found
            • Article: not found

            DNMT1 and DNMT3b cooperate to silence genes in human cancer cells.

            Inactivation of tumour suppressor genes is central to the development of all common forms of human cancer. This inactivation often results from epigenetic silencing associated with hypermethylation rather than intragenic mutations. In human cells, the mechanisms underlying locus-specific or global methylation patterns remain unclear. The prototypic DNA methyltransferase, Dnmt1, accounts for most methylation in mouse cells, but human cancer cells lacking DNMT1 retain significant genomic methylation and associated gene silencing. We disrupted the human DNMT3b gene in a colorectal cancer cell line. This deletion reduced global DNA methylation by less than 3%. Surprisingly, however, genetic disruption of both DNMT1 and DNMT3b nearly eliminated methyltransferase activity, and reduced genomic DNA methylation by greater than 95%. These marked changes resulted in demethylation of repeated sequences, loss of insulin-like growth factor II (IGF2) imprinting, abrogation of silencing of the tumour suppressor gene p16INK4a, and growth suppression. Here we demonstrate that two enzymes cooperatively maintain DNA methylation and gene silencing in human cancer cells, and provide compelling evidence that such methylation is essential for optimal neoplastic proliferation.
              • Record: found
              • Abstract: found
              • Article: not found

              Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b.

              DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b cooperatively regulate cytosine methylation in CpG dinucleotides in mammalian genomes, providing an epigenetic basis for gene silencing and maintenance of genome integrity. Proper CpG methylation is required for the normal growth of various somatic cell types, indicating its essential role in the basic cellular function of mammalian cells. Previous studies using Dnmt1(-/-) or Dnmt3a(-/-)Dnmt3b(-/-) ES cells, however, have shown that undifferentiated embryonic stem (ES) cells can tolerate hypomethylation for their proliferation. In an attempt to investigate the effects of the complete loss of CpG DNA methyltransferase function, we established mouse ES cells lacking all three of these enzymes by gene targeting. Despite the absence of CpG methylation, as demonstrated by genome-wide methylation analysis, these triple knockout (TKO) ES cells grew robustly and maintained their undifferentiated characteristics. TKO ES cells retained pericentromeric heterochromatin domains marked with methylation at Lys9 of histone H3 and heterochromatin protein-1, and maintained their normal chromosome numbers. Our results indicate that ES cells can maintain stem cell properties and chromosomal stability in the absence of CpG methylation and CpG DNA methyltransferases.

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                12 July 2016
                7 June 2016
                : 7
                : 28
                : 44129-44141
                Affiliations
                1 Department of Thoracic & Cardiovascular Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
                2 Department of ICU, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
                3 Department of Thoracic & Cardiovascular Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, China
                4 Current address: Department of Thoracic & Cardiovascular Surgery, The Second Affiliated Hospital of Guilin Medical University, Lingui District, Guilin, China
                Author notes
                Correspondence to: Jianfei Song, guilinsjf@ 123456163.com
                Article
                9866
                10.18632/oncotarget.9866
                5190084
                27286455
                3e01ed2a-84a1-4db9-a1de-19c749757963
                Copyright: © 2016 Bai et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 July 2015
                : 31 March 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                escc,dna methyltransferase 1,methylation,rassf1a,dapk
                Oncology & Radiotherapy
                escc, dna methyltransferase 1, methylation, rassf1a, dapk

                Comments

                Comment on this article

                Related Documents Log