58
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expedition 359 summary

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge (MAR) to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy centered on the use of seabed drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in the hope of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before, during, and after drilling; supply synthetic tracers during drilling for contamination assessment; acquire in situ electrical resistivity and magnetic susceptibility measurements for assessing fractures, fluid flow, and extent of serpentinization; and seal boreholes to provide opportunities for future experiments. Expedition 359 was designed to address changes in sea level and currents, along with monsoon evolution in the Indian Ocean. The Maldives archipelago holds a unique and mostly unread Indian Ocean archive of the evolving Cenozoic icehouse world. Cores from eight drill sites in the Inner Sea of the Maldives provide the tropical marine record that is key for better understanding the effects of this global evolution in the Indo-Pacific realm. In addition, the bank geometries of the carbonate archipelago provide a physical record of changing sea level and ocean currents. The bank growth occurs in pulses of aggradation and progradation that are controlled by sea level fluctuations during the early and middle Miocene, including the mid-Miocene Climate Optimum. A dramatic shift in development of the carbonate edifice from a sea level–controlled to a predominantly current-controlled system appears to be directly linked to the evolving Indian monsoon. This phase led to a twofold configuration of bank development: bank growth continued in some parts of the edifice, whereas in other places, banks drowned. Drowning steps seem to coincide with onset and intensification of the monsoon-related current system and subsequent deposition of contourite fans and large-scale sediment drifts. As such, the drift deposits will provide a continuous record of Indian monsoon development in the region of the Maldives. A major focus of Expedition 359 was to date precisely the onset of the current system. This goal was successfully completed during the expedition. The second important outcome of Expedition 359 was groundtruthing the hypothesis that the dramatic, pronounced change in style of the carbonate platform sequence stacking was caused by a combination of relative sea level fluctuations and ocean current system changes. These questions are directly addressed by the shipboard scientific data. In addition, Expedition 359 cores will provide a complete Neogene δ13C record of the platform and platform margin sediments and a comparison with pelagic records over the same time period. This comparison will allow assessment of the extent to which platform carbonates record changes in the global carbon cycle and whether changes in the carbon isotopic composition of organic and inorganic components covary and the implications this has on the deep-time record. This determination is important because such records are the only type that exists in deep time.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Correlation of Himalayan exhumation rates and Asian monsoon intensity

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Numerical models for diagenesis and the Neogene Sr isotopic evolution of seawater from DSDP Site 590B

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Evolution of the South Asian monsoon wind system since the late Middle Miocene

                Bookmark

                Author and article information

                Journal
                10.14379/iodp.proc.359.2017
                Proceedings of the International Ocean Discovery Program
                International Ocean Discovery Program
                2377-3189
                04 May 2017
                Article
                10.14379/iodp.proc.359.101.2017
                3e09b0ab-3df9-4f63-9066-7b1c983f20ae

                This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History

                Earth & Environmental sciences,Oceanography & Hydrology,Geophysics,Chemistry,Geosciences

                Comments

                Comment on this article