10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      FTS (fused toes homolog) a novel oncoprotein involved in uterine cervical carcinogenesis and a potential diagnostic marker for cervical cancer.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The high incidence and fatality rate of uterine cervical cancer warrant effective diagnostic and therapeutic target identification for this disease. Here, we have found a novel oncoprotein FTS (Fused Toes Homolog), which is involved in cervical cancer pathogenesis. Immunohistochemical analysis of human cervical biopsy samples revealed that the expression of FTS is absent in normal cervical epithelium but progressively overexpressed in human cervical intraneoplastic lesions (CIN-I to CIN-III), this characteristic phenomenon put this protein, a potential diagnostic marker for the screening of early neoplastic changes of cervix. Using FTS-specific small hairpin RNA (shRNA) in cervical cancer cells, we determined a specific role for FTS protein in, cervical neoplasia. Targeted stable knock down of FTS in HeLa cells led to the growth inhibition, cell-cycle arrest, and apoptosis with concurrent increase in p21 protein. FTS effectively represses the p21 mRNA expression in dual luciferase assay which indicates that p21 is transcriptionally regulated by this oncoprotein which in turn affect the regular cell-cycle process and its components. Consistent with this we found a reciprocal association between these proteins in early cervical neoplastic tissues. These data unraveled the involvement of new oncoprotein FTS in cervical cancer which plays a central role in carcinogenesis. Targeted inhibition of FTS lead to the shutdown of key elemental characteristics of cervical cancer and could lead to an effective therapeutic strategy for cervical cancer.

          Related collections

          Author and article information

          Journal
          J. Cell. Physiol.
          Journal of cellular physiology
          Wiley
          1097-4652
          0021-9541
          Jun 2011
          : 226
          : 6
          Affiliations
          [1 ] Department of Radiation Oncology, Chungbuk National University College of Medicine, Cheongju, Republic of Korea.
          Article
          10.1002/jcp.22486
          20945372
          3e0d23fc-02e1-4913-a553-86bd73a7b6d7
          History

          Comments

          Comment on this article