2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ancestral Stress Alters Lifetime Mental Health Trajectories and Cortical Neuromorphology via Epigenetic Regulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Experiences during early development are powerful determinants of lifetime mental health. Here we investigated if ancestral stress regulates the brain’s epigenetic memory to alter neuromorphology and emotionality in the remote F4 progeny. Pregnant female rat dams of the parental F0 generation were exposed to stress on gestational days 12–18. To generate a transgenerational stress lineage, their pregnant daughters (F1), grand-daughters (F2) and great-grand-daughters (F3) remained undisturbed. To generate a multigenerational stress lineage, pregnant dams of each generation (F1–F3) were stressed. A lineage of non-stress controls (F0–F3) was also produced. Multigenerational stress exceeded the impact of transgenerational stress by increasing anxiety-like behaviours and stress response in young and middle-aged F4 males but not females. Functional changes were accompanied by reduced spine density in the male medial prefrontal cortex with opposite effects in the orbital frontal cortex. Ancestral stress regulated cortical miR-221 and miR-26 expression and their target genes, thus downregulating ntrk2 and map1a genes in males while downregulating crh and upregulating map1a genes in females. These miRNA-dependent pathways are candidates for developmental programming of lifetime mental health. Thus, multigenerational stress in particular determines sexually dimorphic predisposition to stress vulnerability and generates a phenotype resembling symptoms of post-traumatic stress disorder.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Chronic stress alters dendritic morphology in rat medial prefrontal cortex.

          Chronic stress produces deficits in cognition accompanied by alterations in neural chemistry and morphology. Medial prefrontal cortex is a target for glucocorticoids involved in the stress response. We have previously demonstrated that 3 weeks of daily corticosterone injections result in dendritic reorganization in pyramidal neurons in layer II-III of medial prefrontal cortex. To determine if similar morphological changes occur in response to chronic stress, we assessed the effects of daily restraint stress on dendritic morphology in medial prefrontal cortex. Male rats were exposed to either 3 h of restraint stress daily for 3 weeks or left unhandled except for weighing during this period. On the last day of restraint, animals were overdosed and brains were stained using a Golgi-Cox procedure. Pyramidal neurons in lamina II-III of medial prefrontal cortex were drawn in three dimensions, and the morphology of apical and basilar arbors was quantified. Sholl analyses demonstrated a significant alteration of apical dendrites in stressed animals: overall, the number and length of apical dendritic branches was reduced by 18 and 32%, respectively. The reduction in apical dendritic arbor was restricted to distal and higher-order branches, and may reflect atrophy of terminal branches: terminal branch number and length were reduced by 19 and 35%. On the other hand, basilar dendrites were not affected. This pattern of dendritic reorganization is similar to that seen after daily corticosterone injections. This reorganization likely reflects functional changes in prefrontal cortex and may contribute to stress-induced changes in cognition. Copyright 2004 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prenatal stress and brain development.

            Prenatal stress (PS) has been linked to abnormal cognitive, behavioral and psychosocial outcomes in both animals and humans. Animal studies have clearly demonstrated PS effects on the offspring's brain, however, while it has been speculated that PS most likely affects the brains of exposed human fetuses as well, no study has to date examined this possibility prospectively using an independent stressor (i.e., a stressful event that the pregnant woman has no control over, such as a natural disaster). The aim of this review is to summarize the existing animal literature by focusing on specific brain regions that have been shown to be affected by PS both macroscopically and microscopically. These regions include the hippocampus, amygdala, corpus callosum, anterior commissure, cerebral cortex, cerebellum and hypothalamus. We first discuss the mechanisms by which the effects of PS might occur. In particular, we show that maternal and fetal hypothalamic-pituitary-adrenal (HPA) axes, and the placenta, are the most likely candidates for these mechanisms. We see that, although animal studies have obvious advantages over human studies, the integration of findings in animals and the transfer of these findings to human populations remains a complex issue. Finally, we show how it is possible to circumvent these challenges by studying the effects of PS on brain development directly in humans, by taking advantage of natural or man-made disasters and assessing the impact and consequences of such stressful events on pregnant women and their offspring prospectively. Copyright © 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease.

              The fetal basis of adult disease is poorly understood on a molecular level and cannot be solely attributed to genetic mutations or a single etiology. Embryonic exposure to environmental compounds has been shown to promote various disease states or lesions in the first generation (F1). The current study used the endocrine disruptor vinclozolin (antiandrogenic compound) in a transient embryonic exposure at the time of gonadal sex determination in rats. Adult animals from the F1 generation and all subsequent generations examined (F1-F4) developed a number of disease states or tissue abnormalities including prostate disease, kidney disease, immune system abnormalities, testis abnormalities, and tumor development (e.g. breast). In addition, a number of blood abnormalities developed including hypercholesterolemia. The incidence or prevalence of these transgenerational disease states was high and consistent across all generations (F1-F4) and, based on data from a previous study, appears to be due in part to epigenetic alterations in the male germ line. The observations demonstrate that an environmental compound, endocrine disruptor, can induce transgenerational disease states or abnormalities, and this suggests a potential epigenetic etiology and molecular basis of adult onset disease.
                Bookmark

                Author and article information

                Contributors
                mirela.ambeskovic@uleth.ca
                gerlinde.metz@uleth.ca
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                23 April 2019
                23 April 2019
                2019
                : 9
                : 6389
                Affiliations
                [1 ]ISNI 0000 0000 9471 0214, GRID grid.47609.3c, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, , University of Lethbridge, ; 4401 University Drive, Lethbridge, Alberta T1K 3M4 Canada
                [2 ]ISNI 0000 0000 9471 0214, GRID grid.47609.3c, Department of Biological Sciences, , University of Lethbridge, ; Lethbridge, Alberta T1K 3M4 Canada
                Author information
                http://orcid.org/0000-0002-5801-7716
                Article
                42691
                10.1038/s41598-019-42691-z
                6476877
                31011159
                3e10951f-a2b7-4635-8b3f-3ecf72d3c7e2
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 3 October 2018
                : 3 April 2019
                Funding
                Funded by: The authors acknowledge support by the Alberta Innovates-Health Solutions Interdisciplinary Team Grant #200700595 “Preterm Birth and Healthy Outcomes” (GM), grants from Alberta Innovates-Health Solutions (GM), the Natural Sciences and Engineering Research Council of Canada (MA, BK, GM), and Canadian Institutes of Health Research #363195 (GM), ICT #158581 (MA).
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                neuronal development,anxiety,prefrontal cortex,epigenetics and behaviour
                Uncategorized
                neuronal development, anxiety, prefrontal cortex, epigenetics and behaviour

                Comments

                Comment on this article