28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Heart Rate Monitoring in Team Sports—A Conceptual Framework for Contextualizing Heart Rate Measures for Training and Recovery Prescription

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A comprehensive monitoring of fitness, fatigue, and performance is crucial for understanding an athlete's individual responses to training to optimize the scheduling of training and recovery strategies. Resting and exercise-related heart rate measures have received growing interest in recent decades and are considered potentially useful within multivariate response monitoring, as they provide non-invasive and time-efficient insights into the status of the autonomic nervous system (ANS) and aerobic fitness. In team sports, the practical implementation of athlete monitoring systems poses a particular challenge due to the complex and multidimensional structure of game demands and player and team performance, as well as logistic reasons, such as the typically large number of players and busy training and competition schedules. In this regard, exercise-related heart rate measures are likely the most applicable markers, as they can be routinely assessed during warm-ups using short (3–5 min) submaximal exercise protocols for an entire squad with common chest strap-based team monitoring devices. However, a comprehensive and meaningful monitoring of the training process requires the accurate separation of various types of responses, such as strain, recovery, and adaptation, which may all affect heart rate measures. Therefore, additional information on the training context (such as the training phase, training load, and intensity distribution) combined with multivariate analysis, which includes markers of (perceived) wellness and fatigue, should be considered when interpreting changes in heart rate indices. The aim of this article is to outline current limitations of heart rate monitoring, discuss methodological considerations of univariate and multivariate approaches, illustrate the influence of different analytical concepts on assessing meaningful changes in heart rate responses, and provide case examples for contextualizing heart rate measures using simple heuristics. To overcome current knowledge deficits and methodological inconsistencies, future investigations should systematically evaluate the validity and usefulness of the various approaches available to guide and improve the implementation of decision-support systems in (team) sports practice.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Monitoring Training Load to Understand Fatigue in Athletes

          Many athletes, coaches, and support staff are taking an increasingly scientific approach to both designing and monitoring training programs. Appropriate load monitoring can aid in determining whether an athlete is adapting to a training program and in minimizing the risk of developing non-functional overreaching, illness, and/or injury. In order to gain an understanding of the training load and its effect on the athlete, a number of potential markers are available for use. However, very few of these markers have strong scientific evidence supporting their use, and there is yet to be a single, definitive marker described in the literature. Research has investigated a number of external load quantifying and monitoring tools, such as power output measuring devices, time-motion analysis, as well as internal load unit measures, including perception of effort, heart rate, blood lactate, and training impulse. Dissociation between external and internal load units may reveal the state of fatigue of an athlete. Other monitoring tools used by high-performance programs include heart rate recovery, neuromuscular function, biochemical/hormonal/immunological assessments, questionnaires and diaries, psychomotor speed, and sleep quality and quantity. The monitoring approach taken with athletes may depend on whether the athlete is engaging in individual or team sport activity; however, the importance of individualization of load monitoring cannot be over emphasized. Detecting meaningful changes with scientific and statistical approaches can provide confidence and certainty when implementing change. Appropriate monitoring of training load can provide important information to athletes and coaches; however, monitoring systems should be intuitive, provide efficient data analysis and interpretation, and enable efficient reporting of simple, yet scientifically valid, feedback.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine.

            Successful training not only must involve overload but also must avoid the combination of excessive overload plus inadequate recovery. Athletes can experience short-term performance decrement without severe psychological or lasting other negative symptoms. This functional overreaching will eventually lead to an improvement in performance after recovery. When athletes do not sufficiently respect the balance between training and recovery, nonfunctional overreaching (NFOR) can occur. The distinction between NFOR and overtraining syndrome (OTS) is very difficult and will depend on the clinical outcome and exclusion diagnosis. The athlete will often show the same clinical, hormonal, and other signs and symptoms. A keyword in the recognition of OTS might be "prolonged maladaptation" not only of the athlete but also of several biological, neurochemical, and hormonal regulation mechanisms. It is generally thought that symptoms of OTS, such as fatigue, performance decline, and mood disturbances, are more severe than those of NFOR. However, there is no scientific evidence to either confirm or refute this suggestion. One approach to understanding the etiology of OTS involves the exclusion of organic diseases or infections and factors such as dietary caloric restriction (negative energy balance) and insufficient carbohydrate and/or protein intake, iron deficiency, magnesium deficiency, allergies, and others together with identification of initiating events or triggers. In this article, we provide the recent status of possible markers for the detection of OTS. Currently, several markers (hormones, performance tests, psychological tests, and biochemical and immune markers) are used, but none of them meet all the criteria to make their use generally accepted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Monitoring Athlete Training Loads: Consensus Statement.

              Monitoring the load placed on athletes in both training and competition has become a very hot topic in sport science. Both scientists and coaches routinely monitor training loads using multidisciplinary approaches, and the pursuit of the best methodologies to capture and interpret data has produced an exponential increase in empirical and applied research. Indeed, the field has developed with such speed in recent years that it has given rise to industries aimed at developing new and novel paradigms to allow us to precisely quantify the internal and external loads placed on athletes and to help protect them from injury and ill health. In February 2016, a conference on "Monitoring Athlete Training Loads-The Hows and the Whys" was convened in Doha, Qatar, which brought together experts from around the world to share their applied research and contemporary practices in this rapidly growing field and also to investigate where it may branch to in the future. This consensus statement brings together the key findings and recommendations from this conference in a shared conceptual framework for use by coaches, sport-science and -medicine staff, and other related professionals who have an interest in monitoring athlete training loads and serves to provide an outline on what athlete-load monitoring is and how it is being applied in research and practice, why load monitoring is important and what the underlying rationale and prospective goals of monitoring are, and where athlete-load monitoring is heading in the future.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                31 May 2018
                2018
                : 9
                : 639
                Affiliations
                [1] 1Faculty of Sport Science, Ruhr-University Bochum , Bochum, Germany
                [2] 2School of Human Movement and Nutrition Sciences, The University of Queensland , St. Lucia, QLD, Australia
                [3] 3Institute of Sports and Preventive Medicine, Saarland University , Saarbrücken, Germany
                [4] 4Institute of Sport Science, Johannes-Gutenberg University , Mainz, Germany
                Author notes

                Edited by: H.-C. Holmberg, Mid Sweden University, Sweden

                Reviewed by: Ferdinando Iellamo, Università degli Studi di Roma Tor Vergata, Italy; Giovanni Messina, University of Foggia, Italy

                *Correspondence: Christoph Schneider christoph.schneider-a5c@ 123456rub.de

                This article was submitted to Exercise Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2018.00639
                5990631
                29904351
                3e13dfe1-f351-4ad3-b7ce-081cf470c36e
                Copyright © 2018 Schneider, Hanakam, Wiewelhove, Döweling, Kellmann, Meyer, Pfeiffer and Ferrauti.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 March 2018
                : 11 May 2018
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 131, Pages: 19, Words: 14583
                Categories
                Physiology
                Technology Report

                Anatomy & Physiology
                player monitoring,cardiac autonomic nervous system,individual response,smallest worthwhile change,multivariate analysis,decision-making

                Comments

                Comment on this article