92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Staphylococcus aureus is a frequent cause for serious, chronic and therapy-refractive infections in spite of susceptibility to antibiotics in vitro. In chronic infections, altered bacterial phenotypes, such as small colony variants (SCVs), have been found. Yet, it is largely unclear whether the ability to interconvert from the wild-type to the SCV phenotype is only a rare clinical and/or just laboratory phenomenon or is essential to sustain an infection. Here, we performed different long-term in vitro and in vivo infection models with S. aureus and we show that viable bacteria can persist within host cells and/or tissues for several weeks. Persistence induced bacterial phenotypic diversity, including SCV phenotypes, accompanied by changes in virulence factor expression and auxotrophism. However, the recovered SCV phenotypes were highly dynamic and rapidly reverted to the fully virulent wild-type form when leaving the intracellular location and infecting new cells. Our findings demonstrate that bacterial phenotype switching is an integral part of the infection process that enables the bacteria to hide inside host cells, which can be a reservoir for chronic and therapy-refractive infections.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Bacterial persistence as a phenotypic switch.

          A fraction of a genetically homogeneous microbial population may survive exposure to stress such as antibiotic treatment. Unlike resistant mutants, cells regrown from such persistent bacteria remain sensitive to the antibiotic. We investigated the persistence of single cells of Escherichia coli with the use of microfluidic devices. Persistence was linked to preexisting heterogeneity in bacterial populations because phenotypic switching occurred between normally growing cells and persister cells having reduced growth rates. Quantitative measurements led to a simple mathematical description of the persistence switch. Inherent heterogeneity of bacterial populations may be important in adaptation to fluctuating environments and in the persistence of bacterial infections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic.

            Staphylococcus aureus is an important cause of skin and soft-tissue infections (SSTIs), endovascular infections, pneumonia, septic arthritis, endocarditis, osteomyelitis, foreign-body infections, and sepsis. Methicillin-resistant S. aureus (MRSA) isolates were once confined largely to hospitals, other health care environments, and patients frequenting these facilities. Since the mid-1990s, however, there has been an explosion in the number of MRSA infections reported in populations lacking risk factors for exposure to the health care system. This increase in the incidence of MRSA infection has been associated with the recognition of new MRSA clones known as community-associated MRSA (CA-MRSA). CA-MRSA strains differ from the older, health care-associated MRSA strains; they infect a different group of patients, they cause different clinical syndromes, they differ in antimicrobial susceptibility patterns, they spread rapidly among healthy people in the community, and they frequently cause infections in health care environments as well. This review details what is known about the epidemiology of CA-MRSA strains and the clinical spectrum of infectious syndromes associated with them that ranges from a commensal state to severe, overwhelming infection. It also addresses the therapy of these infections and strategies for their prevention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Persister cells, dormancy and infectious disease.

              Kim Lewis (2007)
              Several well-recognized puzzles in microbiology have remained unsolved for decades. These include latent bacterial infections, unculturable microorganisms, persister cells and biofilm multidrug tolerance. Accumulating evidence suggests that these seemingly disparate phenomena result from the ability of bacteria to enter into a dormant (non-dividing) state. The molecular mechanisms that underlie the formation of dormant persister cells are now being unravelled and are the focus of this Review.
                Bookmark

                Author and article information

                Journal
                EMBO Mol Med
                EMBO Mol Med
                emmm
                EMBO Molecular Medicine
                WILEY-VCH Verlag (Weinheim )
                1757-4676
                1757-4684
                March 2011
                26 January 2011
                : 3
                : 3
                : 129-141
                Affiliations
                [1 ]simpleInstitute of Medical Microbiology, University Hospital of Münster Münster, Germany
                [2 ]simpleHelmholtz Center for Infection Research (HZI) Braunschweig, Germany
                [3 ]simpleLeibniz-Institute for Arteriosclerosis Research, University Hospital of Münster Münster, Germany
                [4 ]simpleInterdisciplinary Center of Clinical Research (IZKF), University Hospital of Münster Münster, Germany
                [5 ]simpleInstitute of Immunology, University Hospital of Münster Münster, Germany
                [6 ]simpleDepartments of Medicine and Medical Microbiology/Immunology, University of Wisconsin Medical School USA
                Author notes
                * Corresponding author: Tel: +49 2518 355 378, Fax: +49 2518 355 350 E-mail: bettina.loeffler@ 123456web.de
                Article
                10.1002/emmm.201000115
                3395110
                21268281
                3e27336c-0698-461e-b84d-c5a936deef5d
                Copyright © 2011 EMBO Molecular Medicine
                History
                : 29 September 2010
                : 15 December 2010
                : 16 December 2010
                Categories
                Research Articles

                Molecular medicine
                s. aureus scvs,host inflammatory response,chronic infections,bacterial intracellular persistence,s. aureus virulence factor expression

                Comments

                Comment on this article