24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Large Number Discrimination by Mosquitofish

      research-article
      * , ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recent studies have demonstrated that fish display rudimentary numerical abilities similar to those observed in mammals and birds. The mechanisms underlying the discrimination of small quantities (<4) were recently investigated while, to date, no study has examined the discrimination of large numerosities in fish.

          Methodology/Principal Findings

          Subjects were trained to discriminate between two sets of small geometric figures using social reinforcement. In the first experiment mosquitofish were required to discriminate 4 from 8 objects with or without experimental control of the continuous variables that co-vary with number (area, space, density, total luminance). Results showed that fish can use the sole numerical information to compare quantities but that they preferentially use cumulative surface area as a proxy of the number when this information is available. A second experiment investigated the influence of the total number of elements to discriminate large quantities. Fish proved to be able to discriminate up to 100 vs. 200 objects, without showing any significant decrease in accuracy compared with the 4 vs. 8 discrimination. The third experiment investigated the influence of the ratio between the numerosities. Performance was found to decrease when decreasing the numerical distance. Fish were able to discriminate numbers when ratios were 1∶2 or 2∶3 but not when the ratio was 3∶4. The performance of a sample of undergraduate students, tested non-verbally using the same sets of stimuli, largely overlapped that of fish.

          Conclusions/Significance

          Fish are able to use pure numerical information when discriminating between quantities larger than 4 units. As observed in human and non-human primates, the numerical system of fish appears to have virtually no upper limit while the numerical ratio has a clear effect on performance. These similarities further reinforce the view of a common origin of non-verbal numerical systems in all vertebrates.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Developmental change in the acuity of the "Number Sense": The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults.

          Behavioral, neuropsychological, and brain imaging research points to a dedicated system for processing number that is shared across development and across species. This foundational Approximate Number System (ANS) operates over multiple modalities, forming representations of the number of objects, sounds, or events in a scene. This system is imprecise and hence differs from exact counting. Evidence suggests that the resolution of the ANS, as specified by a Weber fraction, increases with age such that adults can discriminate numerosities that infants cannot. However, the Weber fraction has yet to be determined for participants of any age between 9 months and adulthood, leaving its developmental trajectory unclear. Here we identify the Weber fraction of the ANS in 3-, 4-, 5-, and 6-year-old children and in adults. We show that the resolution of this system continues to increase throughout childhood, with adultlike levels of acuity attained surprisingly late in development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tracking multiple independent targets: evidence for a parallel tracking mechanism.

            There is considerable evidence that visual attention is concentrated at a single locus in the visual field, and that this locus can be moved independent of eye movements. Two studies are reported which suggest that, while certain aspects of attention require that locations be scanned serially, at least one operation may be carried out in parallel across several independent loci in the visual field. That is the operation of indexing features and tracking their identity. The studies show that: (a) subjects are able to track a subset of up to 5 objects in a field of 10 identical randomly-moving objects in order to distinguish a change in a target from a change in a distractor; and (b) when the speed and distance parameters of the display are designed so that, on the basis of some very conservative assumptions about the speed of attention movement and encoding times, the predicted performance of a serial scanning and updating algorithm would not exceed about 40% accuracy, subjects still manage to do the task with 87% accuracy. These findings are discussed in relation to an earlier, and independently motivated model of feature-binding--called the FINST model--which posits a primitive identity maintenance mechanism that indexes and tracks a limited number of visual objects in parallel. These indexes are hypothesized to serve the function of binding visual features prior to subsequent pattern recognition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision.

              "Subitizing," the process of enumeration when there are fewer than 4 items, is rapid (40-100 ms/item), effortless, and accurate. "Counting," the process of enumeration when there are more than 4 items, is slow (250-350 ms/item), effortful, and error-prone. Why is there a difference in the way the small and large numbers of items are enumerated? A theory of enumeration is proposed that emerges from a general theory of vision, yet explains the numeric abilities of preverbal infants, children, and adults. We argue that subitizing exploits a limited-capacity parallel mechanism for item individuation, the FINST mechanism, associated with the multiple target tracking task (Pylyshyn, 1989; Pylyshyn & Storm, 1988). Two kinds of evidence support the claim that subitizing relies on preattentive information, whereas counting requires spatial attention. First, whenever spatial attention is needed to compute a spatial relation (cf. Ullman, 1984) or to perform feature integration (cf. Treisman & Gelade, 1980), subitizing does not occur (Trick & Pylyshyn, 1993a). Second, the position of the attentional focus, as manipulated by cue validity, has a greater effect on counting than subitizing latencies (Trick & Pylyshyn, 1993b).
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                22 December 2010
                : 5
                : 12
                : e15232
                Affiliations
                [1]Department of General Psychology, University of Padova, Padova, Italy
                Université Pierre et Marie Curie, France
                Author notes

                Conceived and designed the experiments: CA AB. Performed the experiments: CA LP. Analyzed the data: LP. Wrote the paper: CA AB.

                Article
                PONE-D-10-03297
                10.1371/journal.pone.0015232
                3008722
                21203508
                3e39ea49-d3f3-4dda-b03d-fed7c77566af
                Agrillo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 October 2010
                : 29 October 2010
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Animal Behavior
                Neuroscience
                Cognitive Neuroscience
                Cognition
                Animal Cognition
                Behavioral Neuroscience
                Zoology
                Ichthyology
                Mathematics
                Number Theory
                Number Concepts
                Social and Behavioral Sciences
                Psychology
                Developmental Psychology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article